Hidden structures in the landscape of heterotic line bundle models

Hajime Otsuka (KEK)

References:

- H. O. and K. Takemoto, JHEP **05** (2020) 047, arXiv: 2003.11880
- H. O. work in progress

Outline

- 1. Why machine learning (ML) in string theory?
 - Deal with topological data and computational complexity
- 2. Brief review of ML and autoencoder
- 3. Application of ML to string model building

H. Otsuka and K. Takemoto, JHEP **05** (2020) 047, arXiv: 2003.11880.

4. Conclusion

Superstring theory

Candidate of

- Quantum Gravity
- Unified theory of gauge and gravitational interactions
- (Perturbative) superstring theory predicts the extra 6D space

$$10 = 4 + 6$$

- 6D compactification → Degrees of freedom
 - --- fluxes (VEVs of gauge fields)
 - --- branes (wrapping sub-manifolds)

Huge number of 4D stable vacua (landscape)

Candidates of 6D spaces

If SUSY is preserved in 4D,

$$\delta_{\mathrm{SUSY}}(\mathrm{Gravitino}) = \nabla_{M} \epsilon = 0$$

$$R_{\mu\nu} = 0 \text{ and } R_{ij} = 0$$

$$\mu, \nu = 0,1,2,3$$

$$i, j = 4,5,\cdots,9$$

• 10D(=4+6) spacetime :

4D spacetime (if maximally symmetric) = Minkowski

6D space = Ricci-flat Kahler manifold (Calabi-Yau manifold)

So far, we know $O(10^8)$ 6D CYs (Unknown whether there are infinitely many CYs)

- $-~O(10^{500})$ Type IIB flux vacua
- $O(10^{272,000})$ F-theory flux vacua
- $-0(10^{662})$ MSSM-like models in Heterotic on CYs Constantin-He-Lukas ('18)

Ashok-Douglas ('04)

Taylor-Wang ('15)

Computational complexity

- Big data (Topological data) is extremely constrained by
 - SUSY conditions for fluxes/branes
 - Charge cancellation conditions for brane charges
 - Phenomenological constraints
 - (i) SM gauge group : $SU(3) \times SU(2) \times U(1)$
 - (ii) 3 generations of quarks/leptons, Realistic Yukawa couplings,

Motivation for Machine Learning:

ML can deal with

- Gigantic number of topological data (CYs, flux/brane,...)
- Computationally complexity

How to apply ML?

In June 2017, 4 groups proposed the ML applications to string th. He, Krefl-Seung, Ruehle, Carifio-Halverson-Knoukov-Nelson

Topological data of CY (geometrical quantities, fluxes)

- SM gauge group
- 3 generations of quarks/leptons
- Yukawa and gauge couplings

Question:

Which topological data is important for 3 generations of quarks/leptons

ML would reveal the hidden structure in the string landscape

Outline

- 1. Why machine learning (ML) in string theory?
 - Deal with topological data and computational complexity
- 2. Brief review of ML and autoencoder
- 3. Application of ML to string model building

H. Otsuka and K. Takemoto, JHEP **05** (2020) 047, arXiv: 2003.11880.

4. Conclusion

Layout:

Input: *x* Output: *y*

Output data :
$$y_i = h(\underline{w_{ij} \cdot x_j + b_i})$$
Linear

 w_{ij} : Weight (linear map)

 b_i : Bias

h : Activation function (Non-linear func.)(Analogous to activate the neuron)

Layout:

Input: *x* Output: *y*

Output data : $y_i = \frac{h}{(w_{ij} \cdot x_j + b_i)}$ Linear

 w_{ij} : Weight (linear map) b_i : Bias

h: Activation function (Non-linear func.)
(Analogous to activate the neuron)

$$h_{\text{sigmoid}}(x) = \frac{1}{1 + e^{-x}}$$

$$h_{\text{ReLu}}(x) = \text{Max}(0, x)$$

• Output : $\vec{y} =$

$$h_1\left(w^1\cdot\vec{x}_0+\vec{b}^1\right)$$

 w^1 : Weights

 \vec{b}^1 : Bias

 h_1 : Activation function

• Output :
$$\vec{y} = h_2 \left(w^2 h_1 \left(w^1 \cdot \vec{x}_0 + \vec{b}^1 \right) + \vec{b}^2 \right)$$

$$w^n : \text{Weights}$$

$$\vec{b}^n : \text{Bias}$$

$$h_n : \text{Activation function}$$

• Output :
$$\vec{y} = h_4(w^4h_3(...h_2(w^2h_1(w^1 \cdot \vec{x}_0 + \vec{b}^1) + \vec{b}^2) \cdots + \vec{b}^4)$$

$$w^n : \text{Weights}$$

$$\vec{b}^n : \text{Bias}$$

$$h_n : \text{Activation function}$$

- - —Training data (\vec{x}_d, \vec{y}_d) $(d = 1, 2, ... N_d)$
 - —Find parameters $\{\theta_a\}=\{w_{ij}^n,b_i^n\}$ by minimizing the error function

E.g.,
$$\operatorname{err}(\theta) = \frac{1}{N_d} \sum_{d} |\vec{y}_d - \vec{y}_{NN}(\vec{x}_d, \theta_a)|^2$$

Machine learning in string theory

Basically, three types of ML have been used so far.

See for a review, [F. Ruehle '20; Y-Hui He '20; Tanaka-Tomiya-Hashimoto '20]

- 1. Bypass computations (Supervised ML)
- Deep neural networks, Support vector machines
 [Wang-Zhang '18; Bull-He-Jejjala-Mishra '18; Klaewer-Schlechter '18;
 He '18; Jejjala-Kar-Parrikar '19; He-Lee '19]
- 2. Search the landscape (Semi-supervised ML)
 - Reinforcement Learning

[Carifio-Halverson-Krioukov-Nelson '17; Altman-Carifio-Halverson-Nelson '18,....]

- 3. Vacuum structure (Unsupervised ML)
 - Clustering, Feature extraction, Topological data analysis
 [Cole-Shiu, '17, '18; Mutter-Parr-Vaudrevange, '18; Otsuka-Takemoto '20;
 Deen-He-Lee-Lukas '20],...

Machine learning in string theory

Basically, three types of ML have been used so far.

See for a review, [F. Ruehle '20; Y-Hui He '20; Tanaka-Tomiya-Hashimoto '20]

- 1. Bypass computations (Supervised ML)
- Deep neural networks, Support vector machines
 [Wang-Zhang '18; Bull-He-Jejjala-Mishra '18; Klaewer-Schlechter '18;
 He '18; Jejjala-Kar-Parrikar '19; He-Lee '19]
- 2. Search the landscape (Semi-supervised ML)
 - Reinforcement Learning

[Carifio-Halverson-Krioukov-Nelson '17; Altman-Carifio-Halverson-Nelson '18,....]

- 3. Vacuum structure (Unsupervised ML)
 - Clustering, Feature extraction, Topological data analysis
 [Cole-Shiu, '17, '18; Mutter-Parr-Vaudrevange, '18; Otsuka-Takemoto '20;
 Deen-He-Lee-Lukas '20],...

Autoencoder

- NN is designed to Output ~Input by minimizing the error function
- Advantage: reducing input data to the compressed data in the 2D bottleneck layer (possible to extract characteristic features of the string data)
- We discuss the generation of quarks/leptons by taking Input data as parameters determining 4D EFT

Vacuum structure (Unsupervised ML)

The autoencoder was applied to the heterotic Z_{6-II} orbifold landscape Mutter-Parr-Vaudrevange, 1811.05993

Input : (26 compactification parameters) \times (37 breaking patterns of E_8)=962-dim. O(7 \times 10⁵) Z_{6-II} models (randomly constructed by "orbifolder" package)

Vacuum structure (Unsupervised ML)

Mutter-Parr-Vaudrevange, 1811.05993

- MSSM-like models are clustered in 11 islands at the bottleneck layer
- If the input data is outside this fertile Islands, it is difficult to find the MSSM-like models

Extract only promising models

NN was trained without the knowledge of whether a model is MSSM-like or not.

Location of the MSSM-like models from the Mini-Landscape (red triangles) within the eleven fertile islands R_i (green) and the whole \mathbb{Z}_6 -II landscape (blue). As in figure 4, the MSSM-like models from the Mini-Landscape clearly prefer the fertile islands, especially islands R_1 , R_2 and R_3 , that were identified using our coarse sample only.

Outline

- 1. Why machine learning (ML) in string theory?
 - Deal with topological data and computational complexity
- 2. Brief review of ML and autoencoder
- 3. Application of ML to string model building

H. Otsuka and K. Takemoto, JHEP **05** (2020) 047, arXiv: 2003.11880.

4. Conclusion

ML applications to heterotic string vacua with line bundles

Topological data (geometrical quantities on CY, fluxes)

- SM gauge group,
- 3 generations of quarks/leptons
- Yukawa and gauge couplings

Wall's theorem:

[C. T. C. Wall, '66]

If the following quantities are different for two CYs, they are not diffeo.

$$(h^{1,1}, h^{2,1}, c_2, \kappa_{\alpha\beta\gamma})$$

 $h^{1,1}$: # of two-cycles

 $h^{2,1}$: # of three-cycles

 $c_2 = -\frac{1}{2(2\pi)^2} \text{tr} R^2$ (Second Chern number)

 $\kappa_{\alpha\beta\gamma}$: Intersection numbers among two-cycles

22

ML applications to heterotic string vacua with line bundles

Topological data:

$$(h^{1,1}, h^{2,1}, c_2, \kappa_{\alpha\beta\gamma}) + Fluxes$$

 $h^{1,1}$: # of two-cycles $h^{2,1}$: # of three-cycles $c_2 = -\frac{1}{2(2\pi)^2} {\rm tr} R^2$ (Second Chern number) $\kappa_{\alpha\beta\gamma}$: Intersection numbers

These data determine the generation of quarks/leptons

Question:

Which topological data is important for 3 generations of quarks/leptons

Heterotic string on smooth CY with line bundles

• U(1) Internal gauge fluxes F in two-cycles Σ_i of CY $(i = 1, 2, \dots, h^{1,1})$

$$\frac{1}{2\pi} \int_{\Sigma_i} F = m^{(i)} \in \mathbb{Z}$$

E.g., Hypercharge flux

$$SU(5) \rightarrow SU(3) \times SU(2) \times U(1)_Y$$

$$< F_{U(1)_Y} > \propto \begin{pmatrix} 2 & & & & \\ & 2 & & & \\ & & 2 & & \\ & & & -3 & \\ & & & & -3 \end{pmatrix}$$

- Popular in the F-theory context
 Beasley-Heckman-Vafa, Donagi-Wijnholt ('08)
- Direct flux breaking scenario is applicable in the Heterotic context

Heterotic string on smooth CY with line bundles

• U(1) Internal gauge fluxes F in two-cycles Σ_i of CY $(i = 1, 2, \dots, h^{1,1})$

$$\frac{1}{2\pi} \int_{\Sigma_i} F = m^{(i)} \in \mathbb{Z}$$

- Gauge symmetry breaking $E_8 \times E_8 \text{ or } SO(32) \rightarrow G_{SM} \times G_{hid}$
- Chiral and net-number of zero-modes, given by

$$\chi = \frac{1}{(2\pi)^3} \int_{CY} \left[\frac{1}{6} \operatorname{tr}(F^3) + \frac{1}{12} \operatorname{tr}(R^2) \wedge \operatorname{tr}(F) \right]$$

Background curvatures F and R can lead to

$$Q, L, u^c, d^c, e^c \qquad : \chi = -3$$

No chiral exotics :
$$\chi = 0$$

Heterotic string on smooth CY with line bundles

• $E_8 imes E_8$ heterotic Standard Models are well studied by

Donagi-Ovrut-Pantev-Waldram ('00), Blumenhagen-Honecker-Weigand ('05)

Donagi-Ovrut-Pantev-Waldram ('00), Blumenhagen-Honecker-Weigand ('05), Anderson-Gray-Lukas-Palti ('12),....

but Wilson lines are required to obtain the SM gauge group (applicable to the restricted CYs)

 SO(32) heterotic Standard Models
 S- and T-dual to Intersecting D6-brane models in type IIA string (Several stacks of D-branes → MSSM or Pati-Salam model)

Our research:

SO(32) heterotic SM(MSSM) vacua directly with the SM gauge group from smooth CYs

Setup: SO(32) heterotic string with line bundles

JHEP 05 (2020) 047 (ArXiv:2003.11880) with Kenta Takemoto

Input : at most 161-dimensional parameters $SO(32) \rightarrow G_{\rm SM} \times \Pi_{a=1}^5 U(1)_a \times SO(16)_{\rm hid}$ U(1) fluxes and topological data of 1477 classes of (complete intersection) CYs

$$1 \le h^{1,1} \le 5$$

E.g.,
$$h^{1,1} = 4$$

$$\mathbb{P}^2 \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ \mathbb{P}^2 & 1 & 1 & 0 & 0 & 1 \\ \mathbb{P}^2 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

Ambient Spaces

Four \mathbb{P}^2

27

Setup: SO(32) heterotic string with line bundles

JHEP 05 (2020) 047 (ArXiv:2003.11880) with Kenta Takemoto

Input : at most 161-dimensional parameters $SO(32) \rightarrow G_{\rm SM} \times \Pi_{a=1}^5 U(1)_a \times SO(16)_{\rm hid}$ U(1) fluxes and topological data of 1477 classes of (complete intersection) CYs

 $1 \le h^{1,1} \le 5$

General CICY:

Candelas-Dale-Lutken-Schimmrigk ('88)

Setup: SO(32) heterotic string with line bundles

JHEP 05 (2020) 047 (ArXiv:2003.11880) with Kenta Takemoto

Input : at most 161-dimensional parameters $SO(32) \rightarrow G_{\rm SM} \times \Pi_{a=1}^5 U(1)_a \times SO(16)_{\rm hid}$ U(1) fluxes and topological data of 1477 classes of (complete-intersection) CYs $1 < h^{1,1} < 5$

lead to $O(10^6)$ n-generation models (randomly constructed by our algorithms) satisfying SUSY and Tadpole cancellation conditions, masslessness $U(1)_Y$,...

Totally, 14 layers

Learning =
Adam-Optimizer
In TensorFlow

We apply the K-means clustering to the data at the bottleneck layer

Result (I)

Hodge number of CY: $h^{1,1} = 3$, #of Clusters = 26

 $-2 \le \text{Flux quanta} \le 2$

Result of AE and K-means clustering

Ratio of 3-generation models to $n \neq 0$ -gen. models in each cluster The higher the ratio, the darker the color is.

- 3-generation models are clustered in the specific island ("3-generation island")
- Clustering will be universal phenomena

Result (II)

$$c_2 = -\frac{1}{2(2\pi)^2} \text{tr} R^2 = c_{2,i} \widehat{w}_i$$

$$\widehat{w}_i$$
: four-forms ($i = 1,2,3$)

Histogram of $c_{2,3}$ (Curvature of CY)

"3-generation island"

All the region

$h^{1,1}$	$N_{ m cl}$	Favored $c_{2,i}$	
3	26	(36,36,54)	

3 generation

 \simeq Curvature of CY (c_2) = 18 \mathbb{Z}

Result (II)

Search	$h^{1,1}$	$N_{ m cl}$	Favored $c_{2,i}$	
	3	26	(36,36,54)	
(I)	4	30	(24,24,36,36)	$-2 \le \text{Flux quanta} \le 2$
	5	42	(24,36,36,36,36)	
(II)	3	40	(36,36,36)	$-3 \le \text{Flux quanta} \le 3$
	4	30	(24,36,36,36)	3 \(\frac{1}{2}\) I lux qualita \(\frac{1}{2}\) 3

 3-generation island is strongly correlated with the second Chern number of CY, compared with other topological data

Result (III): Generations of Higgs

- We count the number of Higgs pairs (n_H)
 - vector-like under SM gauge group, but chiral w.r.t. extra U(1)s

of models in "3-generation island"

$$h^{1,1} = 3, -2 \le \text{Flux quanta} \le 2$$

 $h^{1,1} = 3, -3 \le \text{Flux quanta} \le 3$

- In our limited search, 1-pair Higgs model is disfavored
- Generic property : a large number of Higgs pairs

Application to other heterotic string theories

So far, we analyze SO(32) heterotic string line bundle models

• We are trying to analyze $E_8 \times E_8$ and $SO(16) \times SO(16)$ heterotic string theories more rigorously

• We have observed that similar clustering phenomena indeed exist in $E_8 \times E_8$ heterotic line bundle models (Work in progress)

Conclusion

ML can deal with

- Gigantic number of topological data (CYs, flux/brane,...)
- Computationally complexity

For SO(32) heterotic string on CY with line bundles,

3-generation models are clustered in the specific island

"3-generation island" similar to the toroidal orbifold landscape

• 3 generation \simeq Curvature of CY = $18\mathbb{Z}$

Discussion

• Why cluster ?

- Applications of our method to other string theory
 - $-E_8 \times E_8$ heterotic string (work in progress)
 - D-brane models (Type IIB/IIA)

Other ML techniques are also useful to reveal hidden structures in the string landscape from gigantic number of topological data