Hidden structures in the landscape
of heterotic line bundle models

Hajime Otsuka (KEK)

References :

H. O. and K. Takemoto, JHEP 05 (2020) 047, arXiv : 2003.11880
H. O. work in progress



Outline

1. Why machine learning (ML) in string theory ?
— Deal with topological data and computational complexity

2. Brief review of ML and autoencoder

3. Application of ML to string model building
H. Otsuka and K. Takemoto, JHEP 05 (2020) 047, arXiv : 2003.11880.

4. Conclusion



Superstring theory

Candidate of
* Quantum Gravity
 Unified theory of gauge and gravitational interactions

* (Perturbative) superstring theory predicts the extra 6D space
10=4+6
6D compactification = Degrees of freedom
--- fluxes (VEVs of gauge fields)

--- branes (wrapping sub-manifolds)

Huge number of 4D stable vacua (landscape)




Candidates of 6D spaces

If SUSY is preserved in 4D,

dsusy (Gravitino) = Vye = 0

U M=01,-,9

R,y =0andR;; =0 u,v =0,123
Lj=45-,9

10D(=4+6) spacetime :

4D spacetime (if maximally symmetric) = Minkowski

6D space = Ricci-flat Kahler manifold (Calabi-Yau manifold)

So far, we know 0(10%) 6D CYs
(Unknown whether there are infinitely many CYs)



M /F-theory (Unique theory)

l
' ; ' ' ;

Type | Type IIB Type IIA Heterotic Eg X Eg Heterotic SO(32)

Compactifications (Different 6D spaces)

Infinitely many flux/brane choices (described by integers)

(1 IF [

O OO ONONG) ONONG)

— 0(10°°%) Type 1IB flux vacua
— 0(10272900) F_theory flux vacua

Ashok-Douglas (‘04)
Taylor-Wang (‘15)

— 0(10%62) MSSM-like models in Heterotic on CYs constantin-He-Lukas (18,



Computational complexity

Big data (Topological data) is extremely constrained by

— SUSY conditions for fluxes/branes
— Charge cancellation conditions for brane charges

— Phenomenological constraints

(i) SM gauge group : SU(3) X SU(2) x U(1)
(i) 3 generations of quarks/leptons, Realistic Yukawa couplings, .....

Motivation for Machine Learning :

ML can deal with
Gigantic number of topological data (CYs, flux/brane,...)

Computationally complexity



How to apply ML ?

In June 2017, 4 groups proposed the ML applications to string th.
He, Krefl-Seung, Ruehle, Carifio-Halverson-Knoukov-Nelson

Topological data of CY " SM gauge group
(geometrical quantities, fluxes)

)

3 generations of quarks/leptons

Yukawa and gauge couplings

Question :

Which topological data is important for 3 generations of quarks/leptons

ML would reveal the hidden structure in the string landscape




Outline

1. Why machine learning (ML) in string theory ?
— Deal with topological data and computational complexity

2. Brief review of ML and autoencoder

3. Application of ML to string model building
H. Otsuka and K. Takemoto, JHEP 05 (2020) 047, arXiv : 2003.11880.

4. Conclusion



* (Fully connected) neural networks

Layout : Input: x Output: y
X1 w
V1
X2
Y2
X3 ‘/

w;;: Weight (linear map)

Outputdata: ¥ = h(w;;-x; + b;) b; : Bias

h : Activation function (Non-linear func.)
(Analogous to activate the neuron)



* (Fully connected) neural networks

Layout : Input: x Output: y
X1 w
V1
X2
Y2
X3 ‘/

w;;: Weight (linear map)

Outputdata: ¥ = h(w;;-x; + b;) b; : Bias

Linear
h : Activation function (Non-linear func.)
(Analogous to activate the neuron)
hsigmoia (X) = 73— hreLy(x) = Max(D, x)

- m




(Fully connected) neural networks

Input Hidden layer Output

11



* (Fully connected) neural networks

Input Output

X0,2
X0,3
Output: J=
wl: Weights
bl: Bias

h, : Activation function

12



* (Fully connected) neural networks

w™: Weights
b™: Bias
h,, : Activation function
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* (Fully connected) neural networks

Input Output

Output : 5/) — h4(W4h3(...h2 (thl (W1 * .92')0 + 1_9)1) + 1_9)2 o + 1_9)4)
w™: Weights
b™: Bias

h,, : Activation function

14



(Fully connected) neural networks

Input Output

Output: J = hsW*hs(..hy (W?hy (W' % +b") + 5%) -+ b%)

w™: Weights

y ., _ b™: Bias
Learning” (for supervised ML) T, : Activation function

—Training data (X4, v4) (d = 1,2,...Ny)

—Find parameters {6, }={w;;, b;'} by minimizing the error function

15

E 1 - - - 2
g err(6) = N—dz 1Va — Yun (Xg, 84) |
d



Machine learning in string theory

= Basically, three types of ML have been used so far.

See for a review, [F. Ruehle ’20; Y-Hui He '20; Tanaka-Tomiya-Hashimoto ‘20]

1. Bypass computations (Supervised ML)

— Deep neural networks, Support vector machines
[Wang-Zhang '18; Bull-He-Jejjala-Mishra ‘18; Klaewer-Schlechter ‘18;
He ‘18; Jejjala-Kar-Parrikar ‘19; He-Lee ‘19]

2. Search the landscape (Semi-supervised ML)

— Reinforcement Learning
[Carifio-Halverson-Krioukov-Nelson ‘17; Altman-Carifio-Halverson-Nelson ’18,....]

3. Vacuum structure (Unsupervised ML)

— Clustering, Feature extraction, Topological data analysis
[Cole-Shiu, ‘17, ’18; Mutter-Parr-Vaudrevange, '18; Otsuka-Takemoto ’20;
Deen-He-Lee-Lukas ‘20],...
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— Reinforcement Learning
[Carifio-Halverson-Krioukov-Nelson ‘17; Altman-Carifio-Halverson-Nelson ’18,....]
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Autoencoder

AL L. A
g% _ Bottleneck _ §§%
layer

NN is designed to Output ~Input by minimizing the error function

Advantage :
reducing input data to the compressed data in the 2D bottleneck layer

(possible to extract characteristic features of the string data)

We discuss the generation of quarks/leptons by taking
Input data as parameters determining 4D EFT



Vacuum structure (Unsupervised ML)

The autoencoder was applied to the heterotic Z,_;;orbifold landscape
Mutter-Parr-Vaudrevange, 1811.05993

Input : (26 compactification parameters) X (37 breaking patterns of Eg)=962-dim.
O(7 X 10°) Z¢_;; models (randomly constructed by “orbifolder” package)

Bottleneck
layer

19



Vacuum structure (Unsupervised ML)

Mutter-Parr-Vaudrevange, 1811.05993

= MSSM-like models
are clustered in 11 islands
at the bottleneck layer

N
"

=
1

- If the input data is outside
this fertile Islands,
it is difficult to find the N
MSSM-like models

Extract only promising models

. . 2 T T T T T

NN was trained without the e S 2
Location of the MSSM-like models from the Mini-Landscape (red triangles) within the eleven
knOWIEdge Of Wh ethe r a fertile islands R; (green) and the whole Zs-11 landscape (blue). As in figure 4, the MSSM-like

. . models from the Mini-Landscape clearly prefer the fertile islands, especially islands Ry, Ro
m Od EI IS M SS M _I I ke O r n Ot- and Rz, that were identified using our coarse sample only. 20
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ML applications to heterotic string vacua with line bundles

Topological data = SM gauge group,

(geometrical quantities on CY, fluxes) * 3 generations of quarks/leptons
Yukawa and gauge couplings

Wall’s theorem : [C. T. C. Wall, ’66]
If the following quantities are different for two CYs, they are not diffeo.

ml,l) h2,1’ Cs, Ka,By)

h'1 . # of two-cycles

h%1: # of three-cycles
1

" 2(2m)2
Kapy © Intersection numbers among two-cycles

cy, = trR? (Second Chern number)




ML applications to heterotic string vacua with line bundles

Topological data :

(h", h?7, ¢y, Kapy) + Fluxes

h'1: # of two-cycles
h??1 : # of three-cycles
1
T 2(2m)2
Kapy : Intersection numbers

trR? (Second Chern number)

Cr =

These data determine the generation of quarks/leptons

Question :

Which topological data is important for 3 generations of quarks/leptons



Heterotic string on smooth CY with line bundles

U(1) Internal gauge fluxes F in two-cycles X; of CY (i = 1,2,---,h%?)

1 |
— | F=mWeZ
2T Jy,

E.g., Hypercharge flux
SUB) »SUB)xSU2) xU(1)y

<FU(1)Y > X 2

" POpU|ar in the F'theory context Beasley-Heckman-Vafa, Donagi-Wijnholt ('08)

* Direct flux breaking scenario is applicable in the Heterotic context
Blumenhagen-Honecker-Weigand (’05)




Heterotic string on smooth CY with line bundles

U(1) Internal gauge fluxes F in two-cycles X; of CY (i = 1,2,---,h%?)

1 |
— | F=mWeZ
2T Jy,

* Gauge symmetry breaking  Eg X Eg or SO(32) = Ggum X Ghrig

* Chiral and net-number of zero-modes, given by

_ 1 ltr(FS) + itr(RZ) A tr(F)
r T @2n)3 cy L6 12

Background curvatures F and R can lead to

Q,L,u¢,d,e" .y = —3
No chiral exotics . x =0




Heterotic string on smooth CY with line bundles

Eg X Eg heterotic Standard Models are well studied by

Donagi-Ovrut-Pantev-Waldram (‘00), Blumenhagen-Honecker-Weigand (‘05)
Anderson-Gray-Lukas-Palti (‘12),....

but Wilson lines are required to obtain the SM gauge group
(applicable to the restricted CYs)

SO(32) heterotic Standard Models

S- and T-dual to Intersecting D6-brane models in type IIA string
(Several stacks of D-branes = MSSM or Pati-Salam model)

1w yp

v u()

Our research: U(1) E
SO(32) heterotic SM(MSSM) vacua

directly with the SM gauge group from smooth CYs




Setup : SO(32) heterotic string with line bundles

JHEP 05 (2020) 047 (ArXiv:2003.11880) with Kenta Takemoto

Input : at most 161-dimensional parameters  S0(32) — Ggy X 12, U(1), X SO(16)piq
U(1) fluxes and topological data of 1477 classes of (complete intersection) CYs

1<htl <5
E.g., AUl = 4 P?[1 0 0
P21 1 0
P21 0 1
P2 _O 1 1_
Ambient Spaces
Four P2
~
Hypersurface _

CY



Setup : SO(32) heterotic string with line bundles

JHEP 05 (2020) 047 (ArXiv:2003.11880) with Kenta Takemoto

Input : at most 161-dimensional parameters  S0(32) — Ggy X 12, U(1), X SO(16)piq
U(1) fluxes and topological data of 1477 classes of (complete intersection) CYs

1<htl <5
General CICY : ~ - |
ni 1 1 1 q- € Z
P 9 492 - 4 2=
P 4 45 - (g ;n
CY conditions
. . . . K
Prim m m . m ZQ}'=HT-+1
_ql P qK_ mx K J=1
r=1,---.m
Candelas-Dale-Lutken-Schimmrigk (‘88)
™~
Hypersurface _

CY



Setup : SO(32) heterotic string with line bundles
JHEP 05 (2020) 047 (ArXiv:2003.11880) with Kenta Takemoto

Input : at most 161-dimensional parameters

S0(32) - Ggy X 2_,U(1) 4 X SO(16)14q

U(1) fluxes and topological data of 1477 classes of (complete-intersection) CYs

1<htl <5

lead to 0(10°) n-generation models (randomly constructed by our algorithms)
satisfying SUSY and Tadpole cancellation conditions, masslessness U(1)y,...

Totally, 14 layers

Learning =
Adam-Optimizer
In TensorFlow

WAL

Bottleneck
layer

.. I

We apply the K-means clustering to the data at the bottleneck layer 29



Result (1)

Hodge number of CY: h¥1 = 3, #of Clusters = 26

—2 < Flux quanta < 2
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The higher the ratio, the darker the
color is.

* 3-generation models are clustered in the specific island

(“3-generation island”)

e Clustering will be universal phenomena
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Result (I1)

Search | AV | N Favored co;
3 | 26 | (36,36,54)
(I) 4 30 (24,24736736) —2 < Flux quanta < 2
5 | 42 | (24,36,36,36,36)
(II) 3 40 (36’36’36) —3 < Flux quanta < 3
4 | 30 | (24,36,36,36)

= 3-generation island is strongly correlated with
the second Chern number of CY,
compared with other topological data



Result (I1) : Generations of Higgs

= We count the number of Higgs pairs (ny)
— vector-like under SM gauge group, but chiral w.r.t. extra U(1)s

# of models in “3-generation island”
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h'1l = 3,—-2 < Flux quanta < 2 h'1 = 3,—3 < Flux quanta < 3

In our limited search, 1-pair Higgs model is disfavored
Generic property : a large number of Higgs pairs

33



Application to other heterotic string theories

So far, we analyze SO(32) heterotic string line bundle models

We are trying to analyze Eg X Eg and SO(16) X SO(16)
heterotic string theories more rigorously

We have observed that similar clustering phenomena
indeed exist in Eg X Eg heterotic line bundle models
(Work in progress)



Conclusion

ML can deal with
Gigantic number of topological data (CYs, flux/brane,...)
Computationally complexity

For SO(32) heterotic string on CY with line bundles,

3-generation models are clustered in the specific island

“3-generation island”
similar to the toroidal orbifold landscape **
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Discussion

Why cluster ?
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Applications of our method to other string theory

— Eg X Eg heterotic string (work in progress)

— D-brane models (Type II1B/IIA)

Other ML techniques are also useful to reveal

hidden structures in the string landscape from gigantic

number of topological data
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