#### Color superconductivity in lattice QCD

Talk at KEK Theory workshop 2020 Tsukuba, Japan, December 15-18, 2020

#### Jun Nishimura (KEK & SOKENDAI)

Ref.) Ito, Matsufuru, Namekawa, J.N., Shimasaki, Tsuchiya, Tsutsui, JHEP 10 (2020) 144, 2007.08778 [hep-lat], Yokota, Asano, Ito, Kaneko, Matsufuru, Namekawa, J.N., Tsuchiya, Tsutsui, work in progress

## QCD phase diagram at finite T and $\mu$



First principle calculations are difficult due to the sign problem

#### The sign problem in Monte Carlo methods

At finite baryon number density,

$$Z = \int dU \, d\Psi \, e^{-S[U,\Psi]}$$
$$= \int dU \, e^{-Sg[U]} \det \mathcal{M}[U]$$

The fermion determinant becomes complex in general.

$$\det \mathcal{M}[U] = |\det \mathcal{M}[U]| e^{i\Gamma[U]}$$

Generate configurations U with the probability and calculate

$$e^{-S_{g}[U]} | det \mathcal{M}[U] |$$

 $\langle \mathcal{O}[U] \rangle = \frac{\langle \mathcal{O}[U] e^{i \Gamma[U]} \rangle_0}{\langle e^{i \Gamma[U]} \rangle_0}$ 

(reweighting)

become exponentially small as the volume increases due to violent fluctuations of the phase  $\Gamma$ 

Number of configurations needed to evaluate <O> increases exponentially.

"sign problem"

# A new development toward solution to the sign problem

2011~

#### Key: complexification of dynamical variables



#### Plan of the talk

- 1. Complex Langevin method (CLM)
- 2. Application to lattice QCD at finite density
- 3. Color superconductivity on the lattice
- 4. Summary and future prospects

1. Complex Langevin method

#### The real Langevin method

$$Z = \int dx w(x)$$
  $w(x) \ge 0$  Parisi-Wu ('81) Damgaard-Huffel ('87)

View this as the stationary distribution of a stochastic process.

Langevin eq. 
$$\frac{d}{dt}x^{(\eta)}(t) = \underbrace{v(x^{(\eta)}(t))} + \underbrace{\eta(t)} \quad \text{Gaussian noise}$$
 
$$\text{"drift term"} \quad v(x) \equiv \frac{1}{w(x)} \frac{\partial w(x)}{\partial x}$$

$$\lim_{t \to \infty} \langle \mathcal{O}(x^{(\eta)}(t)) \rangle_{\eta} = \frac{1}{Z} \int dx \, \mathcal{O}(x) w(x) \qquad \langle \cdots \rangle_{\eta} = \frac{\int \mathcal{D}\eta \cdots \mathrm{e}^{-\frac{1}{4} \int dt \, \eta^2(t)}}{\int \mathcal{D}\eta \, \mathrm{e}^{-\frac{1}{4} \int dt \, \eta^2(t)}}$$

$$\underline{\text{Proof}} \qquad = \int dx \, \mathcal{O}(x) P(x,t)$$

$$P(x,t) = \langle \delta(x-x^{(\eta)}(t)) \rangle_{\eta}$$

$$\mathrm{Probability \ distribution \ of } x^{(\eta)}(t)$$

Fokker-Planck eq. 
$$\frac{\partial P}{\partial t} = \frac{\partial}{\partial x} \left( \frac{\partial}{\partial x} - \frac{1}{w(x)} \frac{\partial w(x)}{\partial x} \right) P$$
  $\lim_{t \to \infty} P(x, t) = \frac{1}{Z} w(x)$ 

#### The complex Langevin method

Parisi ('83), Klauder ('83)

$$Z = \int dx \, \overline{w(x)}$$
 
$$v(x) \equiv \frac{1}{w(x)} \frac{\partial w(x)}{\partial x} \text{ also becomes complex.}$$

Complexify the dynamical variables, and consider their (fictitious) time evolution :

$$z^{(\eta)}(t) = x^{(\eta)}(t) + i y^{(\eta)}(t)$$

defined by the complex Langevin equation

$$\frac{d}{dt}z^{(\eta)}(t) = v(z^{(\eta)}(t)) + \eta(t)$$
Gaussian noise (real) probability  $\propto e^{-\frac{1}{4}\int dt \, \eta(t)^2}$ 

$$\lim_{t \to \infty} \langle \mathcal{O}(z^{(\eta)}(t)) \rangle_{\eta} \stackrel{?}{=} \frac{1}{Z} \int dx \, \mathcal{O}(x) w(x)$$

Rem 1: When w(x) is real positive, it reduces to the real Langevin method.

Rem 2: The drift term  $v(x) \equiv \frac{1}{w(x)} \frac{\partial w(x)}{\partial x}$  and the observables  $\mathcal{O}(x)$  should be evaluated for complexified variables by analytic continuation.

# 2. Application to lattice QCD at low temperature and high density

Ref.) Ito, Matsufuru, Namekawa, J.N., Shimasaki, Tsuchiya, Tsutsui, JHEP 10 (2020) 144, 2007.08778 [hep-lat]

#### complex Langevin method for finite density QCD

$$w(U) = \mathrm{e}^{-S_{\mathrm{plaq}}[U]} \det M[U] \qquad complex \ ! \\ S_{\mathrm{plaq}}(U) = -\beta \sum_{n} \sum_{\mu \neq \nu} \mathrm{tr} \left( U_{n\mu} U_{n+\hat{\mu},\nu} U_{n+\hat{\nu},\mu}^{-1} U_{n\nu}^{-1} \right)$$

$$S_{\text{plaq}}(U) = -\beta \sum_{n} \sum_{\mu \neq \nu} \text{tr} \left( U_{n\mu} U_{n+\hat{\mu},\nu} U_{n+\hat{\nu},\mu}^{-1} U_{n\nu}^{-1} \right)$$

$$v_{an\mu}(U) = \frac{1}{w(U)} D_{an\mu} w(U)$$

$$D_{an\mu}f(U) = \frac{\partial}{\partial x} f(e^{ixt_0}U_{n\mu})\Big|_{x=0}$$

 $v_{an\mu}(U) = \frac{1}{w(U)} D_{an\mu} w(U)$   $D_{an\mu} f(U) = \frac{\partial}{\partial x} f(e^{ixt_a} U_{n\mu})\Big|_{x=0}$  Complexification of dynamical variables :  $U_{n\mu} \mapsto \mathcal{U}_{n\mu} \in \mathsf{SL}(3,\mathbb{C})$  generators of SU(3)

Discretized version of complex Langevin eq.

$$\mathcal{U}_{n\mu}^{(\eta)}(t+\epsilon) = \exp\left\{i\sum_{a}\left(\epsilon \,v_{an\mu}(\mathcal{U}) + \sqrt{\epsilon}\,\eta_{an\mu}(t)\right)t_{a}\right\}\mathcal{U}_{n\mu}^{(\eta)}(t)$$

The drift term can become large when:

link variables  $\,\mathcal{U}_{n\mu}$  become far from unitary (excursion problem)

"gauge cooling" Seiler-Sexty-Stamatescu, PLB 723 (2013) 213
Nagata-J.N.-Shimasaki, Phys.Rev. D94 (2016) no.11, 114515

 $M[\mathcal{U}]$  has eigenvalues close to zero (singular drift problem) Rem.) The fermion determinant gives rise to a drift  $\operatorname{tr}(M[\mathcal{U}]^{-1}\mathcal{D}_{anu}M[\mathcal{U}])$ 

> Mollgaard-Splittorff, Phys.Rev. D88 (2013) no.11, 116007 J.N.-Shimasaki, Phys.Rev. D92 (2015) no.1, 011501

#### Simulation setup

Ito, Matsufuru, Namekawa, J.N., Shimasaki, Tsuchiya, Tsutsui, JHEP 10 (2020) 144, 2007.08778 [hep-lat]

a = 0.042 fm

by HMC at  $\mu_q = 0$  on  $24^3 \times 48$  lattice

Determined from Sommer scale

- lattice size :  $8^3 \times 16$ ,  $16^3 \times 32$
- plaquette action with  $\beta = 5.7$
- staggered fermion (4 quark flavors)
- CLM is valid for:

$$5.2 \le \mu_q/T \le 7.2 \quad (8^3 \times 16)$$
  
 $1.6 \le \mu_q/T \le 9.6 \quad (16^3 \times 32)$ 

- quark mass : ma = 0.01
- total Langevin time =  $70 \sim 140 \ (8^3 \times 16)$  $10 \sim 20 \ (16^3 \times 32)$

with stepsize  $\epsilon = 10^{-4}$ 

| Note:            | spatial extent                                | temperature (T)          |
|------------------|-----------------------------------------------|--------------------------|
| $8^3 \times 16$  | $0.042 \text{fm} \times 8 = 0.34 \text{ fm}$  | 290 MeV                  |
| $16^3 \times 32$ | $0.042 \text{fm} \times 16 = 0.68 \text{ fm}$ | 145 MeV                  |
|                  | cf) $\Lambda_{	extsf{LQCD}}^{-1} \sim 1$ fm   | $T_c \sim 170 {\sf MeV}$ |

Previous study on a  $4^3 \times 8$  lattice

Nagata, J.N., Shimasaki, Phys.Rev. D98 (2018) no.11, 114513, 1805.03964 [hep-lat]

# Histogram of the drift term

$$8^{3} \times 16$$
,  $N_{f} = 4$   
 $\beta = 5.7$   
 $m = 0.01$ 

#### Reliable regions:

$$\mu_q = 0.1$$
 $0.325 \le \mu_q \le 0.45$ 



#### Eigenvalue distribution of (D+m)



We always have a gap due to finite spatial volume effects, but still the singular-drift problem occurs at  $\mu_q=0.2$  and  $\mu_q=0.3$  possibly due to large fluctuation associated with the phase transition.

#### Results for various observables

Ito, Matsufuru, Namekawa, J.N., Shimasaki, Tsuchiya, Tsutsui, JHEP 10 (2020) 144, 2007.08778[hep-lat]









- The plateau appears with the height 24 for the quark number.
- The plateau shifts to the left on the larger lattice.
- Polyakov line remains small for all the values of  $\mu$  . ("low T behaviors")

### Interpretation of the plateau

Note: the spatial extent of our lattice:  $0.042 \text{fm} \times 8 = 0.34 \text{ fm}$  $0.042 \text{fm} \times 16 = 0.68 \text{ fm}$ 

Still too small to form a baryon.

(The nuclear matter phase does not exist in this setup.)

Formation of the Fermi sphere?

$$E = \sqrt{\mathbf{p}^2 + m^2} \sim \frac{2\pi}{L} |\mathbf{n}| = \begin{cases} 0 & \mathbf{n} = (0, 0, 0) \\ \frac{2\pi}{L} & \mathbf{n} = (\pm 1, 0, 0), (0, \pm 1, 0), (0, 0, \pm 1) \\ \vdots & \frac{2\pi}{L} = \begin{cases} 0.79 & (L = 8) \\ 0.39 & (L = 16) \end{cases}$$

For  $\mu_q \lesssim \frac{2\pi}{L}$ , only zero modes condense.

height of the plateau  $= 3 \times 4 \times 2 = 24$  color flavor spin

At  $\mu_q \sim \frac{2\pi}{L}$ , the 2nd plateau with the height  $24 \times (1+6) = 168$  should appear.

#### Can we see color superconductivity?

Barrois NPB (1977), Frautschi (1978), Bailin, Love, PR (1984), Alford, Rajagopal, Wilczek, PLB (1998), Rapp, Schäfer, Shurayk, Velkovsky, PRL(1998)



attractive in color anti-triplet channel

#### 3 Color superconductivity on the lattice

Ref.) Yokota, Asano, Ito, Kaneko, Matsufuru, Namekawa, J.N., Tsuchiya, Tsutsui, work in progress

#### Let's start with a perturbative regime!

Convensionally, color superconductivity has been studied by considering QCD at very high density.  $(\mu_q \gtrsim 100 \text{TeV})$ 

Quarks come closer, and the effective coupling becomes weak due to asymptotic freedom.

Instead, we consider QCD in a very small box.

Perturbative calculations become valid even at small  $\mu_q$ . Nonperturbative effects can be incorporated just by increasing the volume. (suitable for lattice calculations)

c.f.) dense quark matter in a very small box

- NJL model: Amore, Birse, McGovern, Walet, PRD (2002), Hands, Walters, PLB (2002)
- Two-color QCD: Hands, Hollowood, Myers, JHEP (2010)
- QCD on S<sup>1</sup> × S<sup>3</sup>: Hands, Hollowood, Myers, JHEP (2010)

To our knowledge, this is the first study of color superconductivity in lattice QCD using perturbation theory and the complex Langevin simulation.

# Gap equation for fermion bilinear condensation

$$S_{\mathsf{kin}} = \sum_{x} \bar{\psi}(x) D(m, \mu) \psi(x) = \sum_{x} \bar{\Psi}(x) \mathbf{D} \Psi(x)$$

In order to discuss the situation in which fermion number is not conserved,

we use Nambu-Gor'kov representation

$$\mathbf{D} = \begin{pmatrix} D(m,\mu) & 0 \\ 0 & D(-m,-\mu) \end{pmatrix}$$

 $\langle \psi(x)\psi(y)\rangle \neq 0$ 

$$\bar{\Psi}(x) = (\bar{\psi}(x), \psi(x))$$

 $\Psi(x) = \left(\begin{array}{c} \psi(x) \\ \overline{\psi}(x) \end{array}\right)$ 

full propagator

$$S(x,y) = \langle \Psi(x)\overline{\Psi}(y)\rangle$$

$$= \frac{1}{\mathbf{D} + \Sigma} \qquad \Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$$

Fermion bilinear condensation implies :  $\Sigma_{12}$ ,  $\Sigma_{21} \neq 0$ 

#### Gap equation for fermion bilinear condensation (cont'd)

Gap eq. (at the leading order of perturbation theory)

$$\Sigma = \sum_{S = (\mathbf{D} + \Sigma)^{-1}} S = \begin{pmatrix} 0 & \Sigma_{12} \\ \Sigma_{21} & 0 \end{pmatrix} \qquad \begin{array}{l} \text{At the transition point,} \\ \Sigma_{12}, \; \Sigma_{21} \ll \Lambda_{\text{QCD}} \end{array} \begin{pmatrix} \text{continuous transition} \\ \text{assumed} \end{pmatrix}$$
 
$$\Sigma_{12} = \sum_{S_{12} \sim D_{11}^{-1} \Sigma_{12} D_{22}^{-1}} S_{12} = \sum_{S_{12} \sim D_{11}^{-1} \Sigma_{12} D_{22}^{-1}} S_{12} + \sum_{S_{1$$

Gap eq. is reduced to a linear eq.:  $\mathcal{M}\,\Sigma_{12} = 0$   $\Sigma_{12} \neq 0 \quad \text{requires} \quad \det \mathcal{M} = 0 \quad \text{``Thouless criterion'' known in a more general context'}$ 

## Results for lattice QCD with staggered fermions on a $8^3 \times 128$ lattice



# The appearance of the fermion bilinear condensates at discrete values of $\mu_q$



When the Fermi surface crosses discrete points in the momentum space, those modes can form a Cooper pair without costing extra energy.

Cf) similar observation in NJL model:
Amore, Birse, McGovern, Walet, PRD (2002)

# Critical line in the continuum limit with a fixed physical volume

#### cont. limit : $a \rightarrow 0$

$$aL_s = 1$$
 (fixed)  $aL_t = T^{-1}$  (fixed)  $m = 0$ 

The 1st peak at  $\mu_q = 0$  disappears in the cont. limit.

(See next page.)

Zero momentum modes cannot form a Cooper pair.





The other peaks survive and approach  $1, \sqrt{2}, \sqrt{3}, 2, \cdots$  in the cont. limit.

$$\mathbf{p} = (1,0,0), (1,1,0), (1,1,1), (2,0,0), \cdots$$

#### The 1st peak corresponding to zero momentum pairing



Disappears in the cont. limit  $(\beta \sim \log L_s)$ 

Note: The other peaks grow as  $\propto \log L_s$ 



 $\beta = 20, m = 0.01$ chiral condensate  $8^{3} \times 128$ B=20, m=0.010.05 0.04 Chiral condensate decreases as  $\mu$  increases. w 0.03 0.02 0.01 0.00 10  $\mu L_s$ 



order parameter for color superconductivity

$$\beta = 20, \ m = 0.01$$
  
8<sup>3</sup> × 128

$$\mathcal{O}_{\mathsf{CSC}} = \sum_{x} \varphi_{a}^{\dagger}(x) \, \varphi_{a}(x)$$

$$\sim \sum_{x} \bar{\chi}_{a}(x) \chi_{a}(x) \bar{\chi}_{b}(x) \chi_{b}(x)$$

$$\varphi_a = \epsilon_{abc} \operatorname{tr}(C^{-1} \Psi_b^{\mathsf{T}} C \Psi_c)$$

Large fluctuation observed near the peak of  $\, \beta_{\rm C} \,$ 

Simulations with larger volume are expected to confirm the color superconductivity.



4. Summary and future prospects

#### Summary and future prospects

- The complex Langevin method is a powerful tool to investigate finite density QCD!
  - ➤ The condition for correct convergence is satisfied in the low temperature high density region.
- Color superconductivity can be studied in lattice QCD!
  - > The plateau corresponding to the formation of the Fermi sphere has been observed.
  - Perturbative calculations suggest that fermion bilinear condensates appear when the quark number jumps to the next plateau.
  - CLM will be able to reproduce such predictions for QCD in a small box.

#### Future directions

- $\triangleright$  Larger lattice with smaller  $\beta$  in order to incorporate nonperturbative effects.
- $\triangleright$  The hadronic phase should appear at small  $\mu$  when the box size exceeds  $\sim$ 1 fm. Does the CLM still work in that case ?
- Extending these studies to 2 quark flavors using Wilson fermions, which are more realistic and have clearer flavor structure. (ongoing)