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⚫ Brief review to symmetry protected topological (SPT) 

phases

◆ Classification of SPT phases

◆ Bulk-boundary correspondence

⚫ SPT phases as a generalized (co)homology theory

⚫ The Atiyah-Hirzebruch spectral sequence for 

crystalline SPT phases and LSM theorems. 

Outline



Temperature

P
re

ss
u
re

water vapor

water

ice

⚫ “Topological” equivalence: If there exists a pass connecting two phases A 
and B without a phase transition, A and B are considered to be in a same 
phase. 

⚫ Ice ≠ water

⚫ Water = water vapor 

⚫ SSB of translation symmetry between {ice} and {water, water vapor}

Topological equivalence of phase of matter



Topological phases of matter

⚫ There may exists a phase distinction without SSB in a certain class of 
phases of matter. 

⚫ In the topological phase, we consider the following rule of the game: 

✓ Zero temperature

✓ Gapped (there exists a finite energy gap between the ground and the 
first excited state.)

✓ With symmetry (Z2 Ising, U(1) particle conservation, time-reversal, 
crystalline, …)



⚫ A schematic picture of a phase diagram of the topological phase

⚫ A topological phase := an equivalence class under the equivalence 
relation by the existence of path connecting two points without SSB or 
gapless phases.
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Symmetry Protected Topological phases

⚫ In general, there exists a ground state degeneracy that depends on the 
global topology of the closed space manifold. 

⚫ An SPT phase := a gapped phase that has a unique ground state for any 
closed space manifold (+α). 

Exs: Haldane chain, topological insulators/superconductors

⚫ A long-range entangled topological phase = a gapped phase that has a 
ground state degeneracy for a closed space manifold. 

Exs: Toric code, fluctional quantum Hall effect

Long-range entangled 
topological phaseSPT phase



Classification of SPT phase

⚫ How to classify SPT phases? 

⚫ Recall: 

⚫ In SPT phases, all information is encoded only in the ground state. 
-> No excited states, no scale

-> Topological field theory (TFT)

⚫ Hilbert space is one-dimensional, therefore, we conclude: 

A theory  =  a set of correlation functions

An SPT phase ～ a set of U(1)-valued 
partition functions



Excited 
states

Characterizes 
SPT phases ??

Euclidian spacetime 
manifold

An SPT phase ～ a set of U(1)-valued 
partition functions



An SPT phase ～ a set of U(1)-valued 
partition functions 

⚫ The partition function over a closed space manifold 𝑋 and time circle 𝑆1

is always unity: 

⚫ Therefore, to distinguish different SPT phases, we should employ generic 
closed spacetime manifolds.

◆ Orientation-reversing symmetry → unoriented manifolds

Exs: Klein bottle, real projective spaces, …

◆ Global G symmetry → background gauge fields A



⚫ In sum, 

⚫ Comment: For matter degrees of freedom with fermions, spacetime 
manifold must be equipped with a (variants of) spin structure. 

Background 
𝐺-field

Closed 
spacetime 
manifold

An SPT phase ～ a set of U(1)-valued 
partition functions 

Characterizes 
an SPT phase



Deformation invariance

⚫ In SPT phases, we are interested in theories which are deformation 
invariant

⚫ Ex: the (3+1)D theta term of the background U(1)-field 

has a continuous parameter 𝜃 ∈ [0,2𝜋]. This is not a partition function of an 
SPT phase (but a partition function of a gapped phase). 

However, if 𝜃 is quantized by some symmetry (time-reversal symmetry, for 
example) this (partially) describes an SPT phase. 

Parameters of Hamiltonian

Gapless or SSB
a

Gapped phase



⚫ Ex: the (2+1)D Chern-Simons form of the background U(1)-field

has a quantized parameter k ∈ 𝑍. This is a partition function of an SPT phase. 

An SPT phase = a set of U(1)-valued 
deformation invariant partition functions



Classification of SPT phases
[Chen-Gu-Liu-Wen, Levin-Gu, Gu-Wen, Kapustin, Freed-Hopkins, Yonekura, …]

⚫ It was shown that SPT phases are classified by the “Anderson dual” of the 
“cobordism group”, 

Ω𝑠𝑡𝑟
𝑑 𝐵𝐺 ≅ 𝐹𝑟𝑒𝑒 Ω𝑑+1

𝑠𝑡𝑟 𝐵𝐺 × 𝑇𝑜𝑟 Ω𝑑
𝑠𝑡𝑟 𝐵𝐺 .

⚫ Free part (𝑍) : theta term in (d+1)D → CS term in dD.

⚫ Torsion part (𝑍𝑞) : no continuous parameter



⚫ Brief review to symmetry protected topological (SPT) 

phases

◆ Classification of SPT phases

◆ Bulk-boundary correspondence

⚫ SPT phases as a generalized (co)homology theory

⚫ The Atiyah-Hirzebruch spectral sequence for 

crystalline SPT phases and LSM theorems. 
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Bulk-boundary correspondence

Bulk:
Gapped

Nontrivial SPT phase

Boundary:  low-energy excitation with a 
quantum anomaly

Bulk-boundary correspondence

⚫ For an SPT phase, bulk has no signatures because it is a gapped theory. 

⚫ All physical signatures come from the boundary of space manifold. 

⚫ A bulk U(1)-valued partition function corresponds to a quantum anomaly 
of the boundary. 



Ex: Cluster model [Chen-Lu-Vishwanath]

⚫ (1+1)D bosonic SPT phase with 𝑍2 × 𝑍2 symmetry

⚫ Matter degrees: spin 1/2 at integer and half integer sites. 𝜎𝑗
𝜇
, 𝜏
𝑗+

1

2

𝜇
, 𝑗 ∈ 𝑍.

⚫ Hamiltonian (cluster model [Briegel-Raussendorf])

𝐻 = −෍

𝑗

𝐴
𝑗+

1
2
−෍

𝑗

𝐵𝑗: = −෍

𝑗∈𝑍

𝜎𝑗
𝑧𝜏
𝑗+

1
2

𝑥 𝜎𝑗+1
𝑧 −෍

𝑗∈𝑍

𝜏
𝑗−

1
2

𝑧 𝜎𝑗
𝑥𝜏
𝑗+

1
2

𝑧

⚫ 𝑍2 × 𝑍2 symmetry operators: 
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⚫ All terms are commuted with each other (frustration-free). The ground 

state of H is given by 𝐴
𝑗+

1

2

= 𝐵𝑗 = 1. An excited state has at least a finite 

energy 𝐸 = 2 → gapped. 



⚫ Hamiltonian on the open chain 
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⚫ # (dof) = 2N+1, #(𝐴
𝑗+

1

2

, 𝐵𝑗) = 2N-1 

-> The ground state is 4-fold degenerate. 

Ψ 𝑎, 𝑏 = ෍

𝐷𝐷𝑊𝑠

𝜏1
2

𝑥 = 𝑎 − 𝑏𝑢𝑙𝑘 − 𝜏
𝑁+

1
2

𝑥 = 𝑏 , 𝑎, 𝑏 ∈ {+,−}.

⚫ This 4-fold degeneracy is not an accident, but is protected by the 𝑍2 ×
𝑍2 symmetry. 



⚫ To see this, let’s consider how 𝑍2 × 𝑍2 symmetry operators act on the 
ground states manifold. 
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Ψ
=ෑ

𝑗

𝜎𝑗
𝑥 ቚ

Ψ
=ෑ

𝑗

(𝜏
𝑗−

1
2

𝑧 𝜏
𝑗+

1
2

𝑧 ) = 𝜏1
2

𝑧 ⊗ 𝜏
𝑁+

1
2

𝑧 =:𝑈𝜎
𝐿 ⊗𝑈𝜎

𝑅,

𝑈𝜏 ቚ
Ψ
=ෑ

𝑗

𝜏
𝑗+

1
2

𝑥 ቚ
Ψ
= 𝜏1

2

𝑥 ෑ

𝑗

𝜎𝑗
𝑧𝜎𝑗+1

𝑧 𝜏
𝑁+

1
2

𝑥 = 𝜏1
2

𝑥𝜎1
𝑧 ⊗𝜎𝑁

𝑧𝜏
𝑁+

1
2

𝑥 =:𝑈𝜏
𝐿 ⊗𝑈𝜏

𝑅.

⚫ 𝑍2 × 𝑍2 symmetry operations split into ones for the left and the right edge 
spins. 

⚫ 𝑍2 × 𝑍2 acts on the right spin as a nontrivial projective representation, 
which can be seen in the algebra  

𝑈𝜎
𝑅 𝑈𝜏

𝑅 = −𝑈𝜏
𝑅𝑈𝜎

𝑅.

⚫ This is a sort of quantum anomaly. 



Why quantum anomaly?

⚫ Let’s consider a (0+1)D system with 𝑍2 × 𝑍2 symmetry without quantum 
anomaly. 

⚫ An anomaly-free system is invariant under the gauge transformation of 
background field, implying the group low of the G-actions is preserved. 

𝑈𝜎𝑈𝜏 = 𝑈𝜎𝜏= 𝑈𝜏𝑈𝜎

⚫ Therefore, the breaking of group structure 𝑈𝜎
𝑅 𝑈𝜏

𝑅 = −𝑈𝜏
𝑅𝑈𝜎

𝑅 signals a 
quantum anomaly.

𝜏

𝜏

𝜎

∼

𝜏

𝜎𝜏



Edge perspective: projective representations

⚫ Let 𝐺 be a finite group. A set of matrices 𝐷𝑔 𝑔∈𝐺
is called a projective 

representation when it is a group representation up to a U(1) phase

𝐷𝑔𝐷ℎ = 𝜔𝑔,ℎ 𝐷𝑔ℎ, 𝜔𝑔,ℎ ∈ 𝑈 1 .

⚫ The associativity (𝐷𝑔𝐷ℎ)𝐷𝑘 = 𝐷𝑔(𝐷ℎ𝐷𝑘) yields the 2-cocyle condition 

𝜔𝑔,ℎ𝜔𝑔ℎ,𝑘 = 𝜔𝑔,ℎ𝑘𝜔ℎ,𝑘 .

⚫ A redefinition 𝐷𝑔 ↦ 𝛼𝑔 𝐷𝑔, 𝛼𝑔 ∈ 𝑈 1 yields the equivalence relation (2nd 
coboundary)

𝜔𝑔,ℎ ∼ 𝜔𝑔,ℎ 𝛼ℎ𝛼𝑔ℎ
−1𝛼𝑔

⚫ The factor system 𝜔𝑔,ℎ is classified by the 2nd group cohomology

𝐻2 𝐺, 𝑈 1 = 𝑍2(𝐺, 𝑈(1))/𝐵2(𝐺, 𝑈(1)).



Bulk perspective: (1+1)D Dijkgraaf-Witten 
theory

⚫ Let’s consider the relationship between edge anomaly and the bulk U(1)-
valued partition function. 

⚫ A 𝐺-field 𝐴 over a spacetime manifold 𝑀 is a symmetry defect network 
over 𝑀.

⚫ When a matter field passes a defect line labeled by 𝑔 ∈ 𝐺, the matter 
field is charged by 𝑔. 

𝑔

ℎ
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⚫ The ansatz for U(1)-valued topological action: 

⚫ Gauge invariance requires the 2-cocycle condition on 𝜔𝑔,ℎ.

⚫ We get the (1+1)D Dijkgraaf-Witten topological action labeled by a group 

cocycle 𝜔𝑔,ℎ.
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Anomaly cancellation

⚫ The total system composed of the bulk and the boundary is anomaly free,
namely, invariant under gauge transformations. 
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Bulk-boundary correspondence

Bulk:
Gapped

Nontrivial SPT phase

Boundary:  low-energy excitation with a 
quantum anomaly

Bulk-boundary correspondence

⚫ For an SPT phase, bulk has no signatures because it is a gapped theory. 

⚫ A physical signature comes from the boundary of space manifold. 

⚫ A bulk U(1)-valued partition function corresponds a quantum anomaly of 
the boundary. 



⚫ SPT phases are classified by U(1)-valued partition 

function of which coefficients are quantized. 

⚫ A characteristic of SPT phase is the bulk-boundary 

correspondence: There is one-to-one 

correspondence between an SPT phase of bulk and 

a quantum anomaly of boundary. 

Short summary



⚫ Let us write the ground state with the bases of 𝜎𝑗
𝑧 = {↑, ↓}, 𝜏

𝑗+
1

2

𝑥 = {+.−}.

⚫ 1st terms ->   𝜎𝑗
𝑧𝜎𝑗+1

𝑧 = 𝜏
𝑗+

1

2

𝑥 ->   decorated domain walls (DDWs)

⚫ 2nd terms σ𝑗∈𝑍 𝜏𝑗−1
2

𝑧 𝜎𝑗
𝑥𝜏
𝑗+

1

2

𝑧 fluctuate the decorated domain walls 

-> The ground state is the equal-weight superposition of the decorated 
domain walls. 

Ψ = ෍

𝐷𝐷𝑊𝑠

| 𝐷𝐷𝑊 ⟩



(2+1)d example: the integer quantum Hall state

⚫ Matter: Dirac fermion with U(1) symmetry. 

⚫ Bulk U(1)-valued partition function: Chern-Simons form exp
𝑖

4𝜋
 .𝑀𝐴𝑑𝐴׬

⚫ Boundary: chiral Dirac fermion

෡𝐻𝑏𝑑𝑦 = ෍

𝑘∈𝑍+
𝜃
2𝜋

𝑣𝑘 𝜓𝑘
†𝜓𝑘

⚫ The partition function is not invariant under the large gauge
transformation 𝜃 ↦ 𝜃 + 2𝜋.

⚫ The anomaly on the boundary is cancelled by the bulk CS action.

𝑘

𝐸 = 𝑣𝑘



Outline

Part 2 SPT phases as a generalized (co)homology theory.

Part 3 The Atiyah-Hirzebruch spectral sequence for crystalline SPT phases and
LSM theorems. (if I have much time)

The following talk is based on KS-Xiong-Gomi, arXiv:1810.00801.

Related works:
Teo-Kane, Kitaev, Xiang, Gaiotto-Johnson-Freyd, Song-Huang-Fu-Hermele,
Po-Watanabe-Jian-Zaletel, Thorngren-Else, Shenghan-Meng-Yang,
Song-Fang-Yang, Okuma-Sato-KS, Freed-Hopkins, ...



Literature
I Kitaev proposed that SPT phases are described by a generalized

(co)homology theory. [11]
I Gaiotto and Johnson-Freyd studied this proposal in the perspective of field

theory [18].
I In studying crystalline SPT phase in condensed matter physics, two similar

strategies appeared.
I “Dimensional reduction” to classify SPT phases with crystalline symmetry

[Song-Huang-Fu-Hermele 16],
I “Lattice homotopy” to classify LSM-type theorems

[Po-Watanabe-Jian-Zaletel 17].

I These two procedures would be summarized as “trivializing something
nontrivial living in low-dimensional spaces by using something nontrivial
living in higher-dimensional spaces. (The image from [Huang-Song-Huang-Hermele, 17])

I This reminds us the Atiyah-Hirzebruch spectral sequence (AHSS) of the
generalized homology.

I We reconstruct these studies in terms of the AHSS of the generalized
homology theory. [KS-Xiong-Gomi]



Why generalized (co)homology?

Two important “physical” observations (not mathematically rigorous):

(1) The space of short-range entangled (SRE) states (= unique gapped
ground states) forms an Ω-spectrum of a generalized (co)homology theory.
[Kitaev 11,13,15]

(2) The bulk-boundary correspondence is regarded as the boundary map of a
generalized homology theory.



SRE states and an Ω-spectrum [Kitaev]

I Let Fn be the “space of SRE states in n-spatial dimensions”.

I Fn is a based topological space. The trivial tensor product state can be
regarded as a base point ∗ = |0〉 ∈ Fn.

I Kitaev proposed that {Fn}n∈Z forms an Ω-spectrum, i.e., Fn is
homotopically equivalent to the loop space ΩFn+1,

Fn ∼ ΩFn+1,

where ΩX = {` : [0, 1]→ X |`(0) = `(1) = ∗} is the based loop space of
X .

I As a matter of mathematical fact, given an Ω-spectrum {Fn}n∈Z, one can
construct generalized cohomology and homology theories.

hn(X ,Y ) = [X/Y ,Fn],

hn(X ,Y ) = colimk→∞[Sn+k , (X/Y ) ∧ Fk ].

I cf. F (Y ) =”interacting Hamiltonians over Y ”. Fn := F (Dn, ∂Dn). [Kitaev
11]



Discussion of the homotoly equivalence Fn → ΩFn+1 [Kitaev]
I A characteristic of SRE state is the existence of its inverse

|χ〉 ⊗ |χ̄〉 ∼ |1〉 ⊗ |1〉 ,

where |χ〉 ∈ Fn and |1〉 = ∗ ∈ Fn is a trivial tensor product state.
(“invertible state”)

I For a given n-dim. SRE state |χ〉 ∈ Fn, one can canonically construct an
adiabatic pumping process that pumps the SRE state |χ〉 from the right to
the left boundaries.

Fn → ΩFn+1 = {|ψ(λ)〉 : [0, 1]→ Fn| |ψ(0)〉 = |ψ(1)〉 = |triv〉}



Some useful mathematical facts and physical interpretation

I By design, the classification of n-dim. SPT phases is given by the
disconnected parts of Fn,

π0(Fn) = [pt,Fn] = hn(pt).

I From the Poincaré duality and the suspension isomorphism,

hn(pt) = h−n(pt) = h0(Dn, ∂Dn).

I h0(Dn, ∂Dn) can be identified with the classification of SPT phases over
Dn relative to its boundary ∂Dn.



Why generalized (co)homology?

Two important “physical” observations (not mathematically rigorous):

(1) The space of short-range entangled (SRE) states (= invertible states)
forms an Ω-spectrum of a generalized (co)homology theory. [Kitaev
11,13,15]

(2) The bulk-boundary correspondence is regarded as the boundary map of a
generalized homology theory.



The bulk-boundary correspondence

A short-range entangled 
state

A boundary excitation 
(Hilbert space) with a 

quantum anomaly

I Ex: Haldane chain protected by either TRS or Z2 × Z2 onsite symm.

I Ex: 2d and 3d topological insulator protected by TRS.

Quantum spin Hall 
state

3d topological 
insulator

I The bulk-boundary correspondence reminds us the boundary map of
homology ∂ : X → ∂X .



The axioms of generalized homology theories

I A generalized homology theory hn(X ,Y ),Y ⊂ X , n ∈ Z, is a covariant
functor from topological spaces to ablian groups.

I For a given map f : (X ,Y )→ (X ′,Y ′), we have a homomorphism
f∗ : hn(X ,Y )→ hn(X ′,Y ′) with the same direction.



I Equipped with the boundary map

∂ : hn(X ,Y )→ hn−1(Y ).



I Axioms of generalized homology theory:
I (homotopy)

If f , f ′ : X → X ′ are homotopic, then f∗ = f ′∗.
I (excision)

For A,B ⊂ X , the inclusion A→ A ∪ B induces an isomorphism
hn(A,A ∩ B)→ hn(A ∪ B,B).

I (additivity)
hn(tλXλ,tλYλ) = tλhn(Xλ,Yλ).

I (exactness)
For Y ⊂ X , there is a long exact sequence

· · · → hn(Y )→ hn(X )→ hn(X ,Y )
∂−→ hn−1(Y )→ · · ·

I What is homology group hn(X ,Y ) for SPT phases?



From SPT phases to a generalized homology theory

I h0(X ,Y ) := the abelian group of SPT phases over a real space X which
may have an quantum anomaly over a real space Y ⊂ X .

I We define the boundary map ∂ : h0(X ,Y )→ h−1(Y ) as the
bulk-boundary correspondence.

I This implies h−1(Y ) should be regarded as the abelian group of quantum
anomaly over a real space Y .

Ex: Superconductors over X = S2 that may have an anomalous edge state
over the equator Y = S1. We have

h0(S2, S1) = Z× Z, h−1(S1) = Z,

∂ : h0(S2,S1)→ h−1(S1), (n,m) 7→ n −m.

𝑝𝑥 + 𝑖𝑝𝑦
⊕𝑛

𝑝𝑥 + 𝑖𝑝𝑦
⊕𝑚

𝜕

𝑆2

𝑆1
𝑆1



I The ordinary bulk-boundary correspondence is the special case of the
boundary map ∂ where X = Dn and Y = ∂Dn.

𝑝𝑥 + 𝑖𝑝𝑦
𝜕

𝑆1
𝐷2



For generic n ∈ Z

I The degree n ∈ Z of the generalized homology theory hn(X ,Y ) can be
understood as a kind of a “degree of SPT phenomena”.

I The proper meaning of the (n− 1)-th homology is obtained by considering
what the physical phenomenon living on the boundary of the n-th
homology is.

Ch= -1

Chern ins.

Ch=1

Chern ins.

Ch=1

Chern ins.

chiral edge 

state



...

I h1(X ,Y ) := the abelian group of adiabatic pumps over a real space X
which may create a SRE state on Y ⊂ X .

I h0(X ,Y ) := the abelian group of SPT phases over a real space X which
may have anomalous excitation on Y ⊂ X .

I h−1(X ,Y ) := the abelian group of anomalous theories over a real space X
which may have a “source or sink” of an anomalous excitation on Y ⊂ X .

...



“Physical definition” of hn(X ,Y ) v.s. the axioms

Let’s consider if the above identification of the group hn(X ,Y ) with a physical
phenomenon related to SPT phases satisfies the axioms.

X A covariant functor (Because of the real-space picture)

X (homotopy)
If f , f ′ : X → X ′ are homotopic, then f∗ = f ′∗ .

X (excision)
For A,B ⊂ X , the inclusion A→ A ∪ B induces an isomorphism
hn(A,A ∩ B)→ hn(A ∪ B,B).

X (additivity)
hn(tλXλ,tλYλ) = tλhn(Xλ,Yλ).

X (exactness)
For Y ⊂ X , there is a long exact sequence

· · · → hn(Y )→ hn(X )→ hn(X ,Y )
∂−→ hn−1(Y )→ · · ·

... It looks OK.



Exactness

· · · ∂
1

−→ h0(Y )
f 0
∗−→ h0(X )

g0
∗−→ h0(X ,Y )

∂0

−→ h−1(Y )
f−1
∗−−→ · · ·

I f∗ and g∗ are induced homomorphisms of inclusions f : X → Y and
g : (X , ∅)→ (X ,Y ), respectively.

I f 0
∗ is regarded as embedding an SPT phase over Y in X .



I g 0
∗ is regarded as cutting out Y from X , which leads to anomalous states

over Y from an SPT phase over X .

I ∂0 is the bulk-boundary correspondence.

I From these physical interpretations, we can see the long exact sequence is
compatible with properties of the SPT phases.



How useful is it?

I So far, I have discussed the abstract mathematical structure of SPT
phases.

I There are several practical merits to study SPT phases.

I The real space X can be an arbitrary real space, which can not be a
manifold (a manifold is locally Euclidean). For example, we can ask what
is the classification of SPT phases, adiabatic pumps, anomalies over a
trijunction, the Klein bottle, . . . .

I Since the generalized homology description is based on the real space on
which SPT phases defined, it is straightforward to implement spatial
symmetry (point group and space group).

⇒ Equivariant homology hG
n (X ,Y ).

In particular, the Atiyah-Hirzebruch Spectral Sequence (AHSS), a spectral
sequence of generalized (co)homology theories, gives us a systematic way
to thinking the interplay of crystalline symmetry and SPT phases.



Summary for part 2

I Invertibility of SRE states
⇒ an Ω-spectrum
⇒ a generalized (co)homology theory.

I The mathematical structure behind SPT phenomena such as SPT phases,
anomalous excitations, adiabatic pumps, can be understood in the
framework of the generalized homology theory.

I Open questions:
I What is the generalized (co)homology description of the bulk-defect

correspondence?
→ Probably, the KK -theory, which is like a combination of the homology
and the cohomology, does work.

Real space : homological
Parameter space: cohomological

I Can we find good physical interpretation for h−2(X ,Y ), h−3(X ,Y ), . . . ?

I Applying the Atiyah-Hirzebruch spectral sequence, which is a
well-developed machinery in generalized (co)homology theories, to
crystalline SPT phases gives us the comprehensive understanding of
higher-order SPT phases and LSM theorems. (Part 3)



Outline

Part 2 SPT phases as a generalized homology theory.

Part 3 The Atiyah-Hirzebruch spectral sequence for crystalline SPT phases and
LSM theorems. (if I have much time)



Atiyah-Hirzebruch Spectral Sequence (AHSS)

I The AHSS [Atiyah-Hirzebruch ’61] is a spectral sequence to compute a
generalized (co)homology theory h∗.

I This is the mathematical structure behind the “dimensional reduction”
[Song-Huang-Fu-Hermele 16] and the “lattice homotopy”
[Po-Watanabe-Jian-Zaletel 17], but the AHSS goes beyond and complete
their strategy. [KS-Xiong-Gomi, Song-Fang-Qi, Jiang-Cheng-Qi,
Else-Thorngren]

I In general, a spectral sequence starts from the E 1-page, which is a
something computable.

I We compute the nth differential (n = 1, 2, . . . ,)

dn
p,q : E n

p,q → E n
p−n,q+n−1, dn ◦ dn = 0.

I The next page is defined as the homology of dn,

E n+1
p,q = Ker dn

p,q/Im dn
p+n,q−n+1.

I Assume that this iteration converges at some E r -page.

E 1 ⇒ E 2 ⇒ · · ·E r = E r+1 = · · · =: E∞.

I The E∞-page approximates the homology theory h∗(X ,Y ). (see below)



I The starting point of the AHSS is to give a filtration of the space X ,

X0 ⊂ X1 ⊂ · · ·X .

I A useful filtration is a cell-decomposition

X = {0-cells} t {1-cells} t {2-cells} t · · ·

with the following property: On each p-cell Dp the crystalline symmetry G
behaves as an onsite symmetry of the little group GDp over the p-cell Dp.,
which we call a uniform cell decomposition (only for this slide).

I The p-skeleton Xp is defined by

X0 = {0-cells}, Xp = Xp−1 ∪ {p-cells}.



A uniform cell decomposition

Ex: 2d real space with C4 rotation nZ2 translation symmetry.

{0-cells}

{1-cells}

{2-cells}

(0,0) (
1

2
, 0)

(0,
1

2
) (

1

2
,
1

2
)



Topological Crystalline Liquid [Thorngren-Else 16]

I Please keep in your mind the following picture:
The spatial scale a of crystalline symmetry is much larger than the scale ξ
of microscopic degrees of freedom.

I Of course, this is not the case in cond-mat problems, however, it can be
used to classify SPT phases because the effective theory would be
“topological”. (Under debate.)



E 1-page

I The E 1-page is defined as

E 1
p,−q := hG

p−q(Xp,Xp−1),

the (p − q)-th homology over Xp relative to Xp−1.

I For instance, E 1
p,−p = hG

0 (Xp,Xp−1) is the abelian group of SPT phases
over Xp which can be anomalous over Xp−1.

I For a uniform cell decomposition, we have equalities

E 1
p,−q
∼=

∏
j∈p-cells

h
G
D
p
j

p−q(Dp
j , ∂D

p
j ) ∼=

∏
j∈p-cells

h̃
G
D
p
j

p−q(Dp
j /∂D

p
j (= Sp))

∼=
∏

j∈p-cells

h
G
D
p
j

−q (pt) (suspension iso.)

∼=
∏

j∈p-cells

h
G
D
p
j

0 (Dq, ∂Dq)

I Therefore, E 1
p,−q is the ablian group of q-dim. SPT phases (we denote

them by SPTq) with the onsite GD
p
j

symmetry.



The first differential d1

I The E 1-page hosts the “local information” of SPT phenomena.
I We should properly glue the local information together, which is partly

done by the first differential d1
p,−q : E 1

p,−q → E 1
p−1,−q.

I The first differential d1 can be “physically” understood and is computable.
(cf. [Song-Huang-Fu-Hermele 16, Po-Watanabe-Jian-Zaletel 17])

0-cell 1-cell 2-cell 3-cell

Anomalies

SPT phases

Adia. pumps

The adiabatic 
creation of a 1d SPT 
phase over a 2-cell

Anomalous edge 
states of a 1d SPT 
phase over a 1-cell

Homology



The second differential d2

I The E 2-page hosts the “local information” of SPT phenomena which are
glued together over the 1-skeleton X1.

I We should further compute the compatibility over 2-cells, which is
represented by the second differential d2

p,−q : E 2
p,−q → E 2

p−2,−q+1.
I The second differential d2 is also “physically” understood and computed.

0-cell 1-cell 2-cell 3-cell

Anomalies

SPT phases

Adia. pumps

A 2d SPT phase over a 
2-cell may have an 
anomaly at a 0-cell

Homology



The third differential d3

I In the same way, we have the third differential d3
p,−q : E 3

p,−q → E 3
p−3,−q+2.

I The third differential d3 is also “physically” understood and computed.

0-cell 1-cell 2-cell 3-cell

anomalies

SPT phases

Adia. pumps

The adiabatic 
creation of a 2d SPT 
phase over a 3-cell 

may be equivalent to 
an SPT phase over a 

0-cellHomology



Filtration of the homology group

I E∞-page itself does not provides the classification of SPT phenomena.

I Introduce the following subgroups of hG
n (X ,Y ),

Fphn := Im [hG
n (Xp,Xp ∩ Y )→ hG

n (X ,Y )], p = 0, 1, . . . .

I This has the clear physical meaning. For instance, Fph0 is the classification
of SPT phases over the p-skeleton Xp which persists after being embedded
in the whole space X .

I We have a filtration of the homology group

0 ⊂ F0hn ⊂ F1hn ⊂ · · · ⊂ Fdhn = hG
n (X ,Y ),

where d is the space dimension of X .

I The following relation connects the E∞-page and the homology group.

Fphn/Fp−1hn ∼= E∞p,n−p.

I The E∞-page has good physical meanings.



Higher-order SPT phases

I E∞p,−p: The classification of (d − p + 1)th-order SPT phases. (cf.
Huang-Song-Huang-Hermele)

I Ex: 3d with point group symmetry (without translation symmetry):

I This unifies the terminology of “strong” and “weak” SPT phases and
higher-order SPT phases.



Ex: the classification of higher-order TIs with magnetic point group
symmetry via the AHSS [Okuma-Sato-KS, cf. Cornfeld-Chapman, KS]





LSM type theorems
I LSM-type theorems forbid the system with a sort of dof having a unique

symmetric gapped ground state in the presence of translation symmetry
and others. [Chen-Gu-Wen 11, Watanabe-Po-Vishwanath-Zaletel 15]

I The group E∞0,−1 is the classification of the LSM theorem with crystalline
G symmetry. (cf. Po-Watanabe-Jian-Zaletel 17, )

I See [KS-Xiong-Gomi 18, Else-Thorngren 19, Jiang-Cheng-Qi 19] for the
detail.

I “ A LSM theorem as a boundary of an SPT phase” [Metlitski-Thorngren,
...]

I Using the AHSS, one can systematically classify the LSM-type theorems
for a given space group and onsite symmetry. Many symmetry classes are
remain unclassified.
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Summary for part 3

I The AHSS gives us a useful tool to study the SPT phases and LSM
theorems with crystalline symmetry with respect to high-symmetry regions
in the real space.

I The differentials of the AHSS can be physically understood, thus they are
computable from physical arguments. See KS-Xiong-Gomi for various
worked examples of higher-differentials.

I The E∞-page itself has a physical meaning. It represents the classification
of higher-order SPT phases, anomalies, and adiabatic pumps. In
particular, E∞−1,0 is the classification of LSM theorems.


