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® Brief review to symmetry protected topological (SPT)
phases
& Classification of SPT phases
€ Bulk-boundary correspondence

® SPT phases as a generalized (co)homology theory

® The Atiyah-Hirzebruch spectral sequence for
crystalline SPT phases and LSM theorems.



Topological equivalence of phase of matter
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“Topological” equivalence: If there exists a pass connecting two phases A
and B without a phase transition, A and B are considered to be in a same
phase.

Ice # water
Water = water vapor

SSB of translation symmetry between {ice} and {water, water vapor}



Topological phases of matter

® There may exists a phase distinction without SSB in a certain class of
phases of matter.

® In the topological phase, we consider the following rule of the game:
v’ Zero temperature

v' Gapped (there exists a finite energy gap between the ground and the
first excited state.)

v With symmetry (Z2 Ising, U(1) particle conservation, time-reversal,
crystalline, ---)



® A schematic picture of a phase diagram of the topological phase

® A topological phase := an equivalence class under the equivalence
relation by the existence of path connecting two points without SSB or
gapless phases.
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Symmetry Protected Topological phases

® In general, there exists a ground state degeneracy that depends on the
global topology of the closed space manifold.

® An SPT phase := a gapped phase that has a unique ground state for any
closed space manifold (+a).
Exs: Haldane chain, topological insulators/superconductors

® A long-range entangled topological phase = a gapped phase that has a
ground state degeneracy for a closed space manifold.
Exs: Toric code, fluctional quantum Hall effect
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Classification of SPT phase

® How to classify SPT phases?

® Recall:

A theory = a set of correlation functions

® In SPT phases, all information is encoded only in the ground state.
-> No excited states, no scale
-> Topological field theory (TFT)

® Hilbert space is one-dimensional, therefore, we conclude:

An SPT phase ~ a set of U(1)-valued

partition functions




An SPT phase ~ a set of U(1)-valued

partition functions
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An SPT phase ~ a set of U(1)-valued

partition functions

® The partition function over a closed space manifold X and time circle S?
is always unity:

Z(X x 8Y =Tr(1) = (GS|GS) = 1.

® Therefore, to distinguish different SPT phases, we should employ generic
closed spacetime manifolds.

€ Orientation-reversing symmetry — unoriented manifolds

Exs: Klein bottle, real projective spaces, -

€ Global G symmetry — background gauge fields A



An SPT phase ~ a set of U(1)-valued

partition functions

® In sum,

Z(M,A) = / [[ Dee S5 Gmeed)

/ / mat. fields
= |Z(M, A)| x ">

Closed Background !
spacetime G-field |
manifold Characterizes

an SPT phase

® Comment: For matter degrees of freedom with fermions, spacetime
manifold must be equipped with a (variants of) spin structure.



Deformation invariance

® In SPT phases, we are interested in theories which are deformation
invariant

Gapped phase

Gapless or SSB
| a e

Parameters of Hamiltonian

® Ex: the (3+1)D theta term of the background U(1)-field

2110 5
Exp ( 12 /MF )
has a continuous parameter 6 € [0,2xr]. This is not a partition function of an
SPT phase (but a partition function of a gapped phase).

However, if 6 is quantized by some symmetry (time-reversal symmetry, for
example) this (partially) describes an SPT phase.



® Ex: the (2+1)D Chern-Simons form of the background U(1)-field

)
Exp(mf/ AdA), ke
47T M

has a quantized parameter k € Z. This is a partition function of an SPT phase.

An SPT phase = a set of U(1)-valued

deformation invariant partition functions




Classification of SPT phases
[Chen-Gu-Liu-Wen, Levin-Gu, Gu-Wen, Kapustin, Freed-Hopkins, Yonekura, -]

® It was shown that SPT phases are classified by the “Anderson dual” of the
“cobordism group”,

0% (BG) = Free O3, (BG) X Tor Q5" (BG).

® Free part (Z) : theta term in (d+1)D — CS term in dD.

® Torsion part (Z;) : no continuous parameter



® Brief review to symmetry protected topological (SPT)
phases
& Classification of SPT phases
€ Bulk-boundary correspondence

® SPT phases as a generalized (co)homology theory

® The Atiyah-Hirzebruch spectral sequence for
crystalline SPT phases and LSM theorems.



Bulk-boundary correspondence

® For an SPT phase, bulk has no signatures because it is a gapped theory.
® All physical signatures come from the boundary of space manifold.

® A bulk U(1)-valued partition function corresponds to a quantum anomaly
of the boundary.

Bulk:
Gapped
Nontrivial SPT phase

Boundary: low-energy excitation with a NM<E:

guantum anomaly




Ex: Cluster model [Chen-Lu-Vishwanath]

® (1+1)D bosonic SPT phase with Z, x Z, symmetry

® Matter degrees: spin 1/2 at integer and half integer sites. aj“,r]f‘#,j € Z.
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® Hamiltonian (cluster model [BriegeI—Raussendorf])

- Jt3 +3 =3 J+—
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® /, XZ, symmetry operators:

— X — X
U(,—Haj, UT—HT,l
A Jty

J J

® All terms are commuted with each other (frustration-free). The ground
state of H is given by Aj+1 = B; = 1. An excited state has at least a finite

2

energy E = 2 — gapped.



® Hamiltonian on the open chain
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® # (dof) = 2N+1, #(Aj+1,Bj) = 2N-1

-> The ground state is 4-fold degenerate.

W(a, b)) = Z (+F = @) = bulk — (2 1 = b)>, ab € {+ -}

DDWs '~ 2 2

® This 4-fold degeneracy is not an accident, but is protected by the Z, x
Z, symmetry.



To see this, let's consider how Z, x Z, symmetry operators act on the
ground states manifold.

Us| = _[ijLP: _[(T 1T 1)—T1 ®T 1=1U§®U§,
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Z, X Z, symmetry operations split into ones for the left and the right edge
spins.

Z, X Z, acts on the right spin as a nontrivial projective representation,
which can be seen in the algebra

Uy Uf = —UFUZ.

This is a sort of quantum anomaly.



Why quantum anomaly?

® |et's consider a (0+1)D system with Z, x Z, symmetry without quantum
anomaly.

® An anomaly-free system is invariant under the gauge transformation of
background field, implying the group low of the G-actions is preserved.

UsUr = Ugr= U Uy

T A T A

&~ 0O A OT

® Therefore, the breaking of group structure UZ? UR = —URUE signals a
quantum anomaly.



Edge perspective: projective representations

® Let G be a finite group. A set of matrices {Dg}geG is called a projective
representation when it is a group representation up to a U(1) phase

DgDh — C()g,h Dgh' (Ug,h (S U(l)
® The associativity (D,D)Dy, = D,(DyDy) Yields the 2-cocyle condition

WghWghk = Wghk Whk-

® A redefinition D, » a, Dy, a, € U(1) yields the equivalence relation (2nd
coboundary)

-1

® The factor system w,, is classified by the 2nd group cohomology

H?(G,U(1)) = Z%(G,U(1))/B?(G, U(1)).



Bulk perspective: (14+1)D Dijkgraaf-Witten
theory

® |et's consider the relationship between edge anomaly and the bulk U(1)-
valued partition function.

® A G-field A over a spacetime manifold M is a symmetry defect network
over M.

® When a matter field passes a defect line labeled by g € G, the matter
field is charged by g.



® The ansatz for U(1)-valued topological action:

etSm(4) — l Wg.h, Wwgn € U(L).

junctions

® Gauge invariance requires the 2-cocycle condition on wg j,.

Wy, hk

® We get the (1+1)D Dijkgraaf-Witten topological action labeled by a group
cocycle wg .



Anomaly cancellation

® The total system composed of the bulk and the boundary is anomaly free,
namely, invariant under gauge transformations.

Bulk Right edge Bulk Right edge
T T
g
gh w‘;}l gh
h



Bulk-boundary correspondence

® For an SPT phase, bulk has no signatures because it is a gapped theory.
® A physical signature comes from the boundary of space manifold.

® A bulk U(1)-valued partition function corresponds a quantum anomaly of
the boundary.

Bulk:
Gapped
Nontrivial SPT phase

Boundary: low-energy excitation with a
guantum anomaly



Short summary

® SPT phases are classified by U(1)-valued partition
function of which coefficients are quantized.

® A characteristic of SPT phase is the bulk-boundary
correspondence: There is one-to-one
correspondence between an SPT phase of bulk and
a quantum anomaly of boundary.



® Let us write the ground state with the bases of o7 = {T1,1}, r]?:l = {+.-}.

2

® lstterms -> ofcf, = r]?‘+1 -> decorated domain walls (DDWS5s)
2
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® 2nd terms Z]EZT] mj r] fluctuate the decorated domain walls
2

-> The ground state is the equal-weight superposition of the decorated
domain walls.

W)= ) |DDW)

DDWs



(2+1)d example: the integer quantum Hall state

® Matter: Dirac fermion with U(1) symmetry.

® Bulk U(1)-valued partition function: Chern-Simons form expﬁfMAdA.

E = vk

® Boundary: chiral Dirac fermion
ﬁbdy = Z vk I/J;rl/)k /

0

kEZ'l'ﬁ

k

® The partition function is not invariant under the Ilarge gauge
transformation 6 - 6 + 2m.

® The anomaly on the boundary is cancelled by the bulk CS action.



Outline

Part 2 SPT phases as a generalized (co)homology theory.

Part 3 The Atiyah-Hirzebruch spectral sequence for crystalline SPT phases and
LSM theorems. (if | have much time)

The following talk is based on KS-Xiong-Gomi, arXiv:1810.00801.
Related works:

Teo-Kane, Kitaev, Xiang, Gaiotto-Johnson-Freyd, Song-Huang-Fu-Hermele,
Po-Watanabe-Jian-Zaletel, Thorngren-Else, Shenghan-Meng-Yang,
Song-Fang-Yang, Okuma-Sato-KS, Freed-Hopkins, ...



Literature

» Kitaev proposed that SPT phases are described by a generalized
(co)homology theory. [11]
» Gaiotto and Johnson-Freyd studied this proposal in the perspective of field
theory [18].
» In studying crystalline SPT phase in condensed matter physics, two similar
strategies appeared.
» “Dimensional reduction” to classify SPT phases with crystalline symmetry
[Song-Huang-Fu-Hermele 16],
> “Lattice homotopy” to classify LSM-type theorems
[Po-Watanabe-Jian-Zaletel 17].
» These two procedures would be summarized as “trivializing something
nontrivial living in low-dimensional spaces by using something nontrivial
living in higher-dimensional spaces. (The image from [Huang-Song-Huang-Hermele, 17])

» This reminds us the Atiyah-Hirzebruch spectral sequence (AHSS) of the
generalized homology.

» We reconstruct these studies in terms of the AHSS of the generalized
homology theory. [KS-Xiong-Gomi]



Why generalized (co)homology?

Two important “physical” observations (not mathematically rigorous):

(1) The space of short-range entangled (SRE) states (= unique gapped
ground states) forms an Q-spectrum of a generalized (co)homology theory.

[Kitaev 11,13,15]

(2) The bulk-boundary correspondence is regarded as the boundary map of a
generalized homology theory.



SRE states and an Q-spectrum [Kitaev]

» Let F, be the “space of SRE states in n-spatial dimensions”.

» F, is a based topological space. The trivial tensor product state can be
regarded as a base point x = |0) € F,.

> Kitaev proposed that {F,}sez forms an Q-spectrum, i.e., F, is
homotopically equivalent to the loop space QF,11,

FnNQFn+17

where QX = {£:[0,1] — X|€(0) = ¢(1) = =} is the based loop space of
X.

> As a matter of mathematical fact, given an Q-spectrum {F,},cz, one can
construct generalized cohomology and homology theories.

R"(X,Y) =[X/Y,Fl,
ha(X,Y) = colimy— oo [S™5, (X/Y) A Fil.

» cf. F(Y) ="interacting Hamiltonians over Y”. F,:= F(D",0D"). [Kitaev
11]



Discussion of the homotoly equivalence F, — QF, 11 [Kitaev]

» A characteristic of SRE state is the existence of its inverse

IX) @[x) ~ 1) @1),
where |x) € F, and |1) = % € F, is a trivial tensor product state.
(“invertible state")
> For a given n-dim. SRE state |x) € F,, one can canonically construct an

adiabatic pumping process that pumps the SRE state |x) from the right to
the left boundaries.

[E N S S S O S U DU s DS (DS O s DU OO

Td—1

Fo— QFper = {[B(V) : [0,1] = Fol j0(0)) = (1) = |iriv)}



Some useful mathematical facts and physical interpretation

> By design, the classification of n-dim. SPT phases is given by the
disconnected parts of Fj,

mo(Fn) = [pt, Fn] = h"(pt).
» From the Poincaré duality and the suspension isomorphism,
h"(pt) = h_n(pt) = ho(D",0D").

» ho(D",0D") can be identified with the classification of SPT phases over
D" relative to its boundary OD".



Why generalized (co)homology?

Two important “physical” observations (not mathematically rigorous):

(1)

(2) The bulk-boundary correspondence is regarded as the boundary map of a
generalized homology theory.



The bulk-boundary correspondence

A short-range entangled A boundary excitation
state (Hilbert space) with a
quantum anomaly

» Ex: Haldane chain protected by either TRS or Zy X Z, onsite symm.

/ f
4 1

» Ex: 2d and 3d topological insulator protected by TRS.

Quantum spin Hall

state

3d topological
insulator

» The bulk-boundary correspondence reminds us the boundary map of
homology 0 : X — 0X.



The axioms of generalized homology theories

> A generalized homology theory h,(X,Y),Y C X,n € Z, is a covariant
functor from topological spaces to ablian groups.

> For a given map f : (X,Y) — (X', Y'), we have a homomorphism
fo ha(X,Y) = ho(X', Y') with the same direction.

/
Y

XI

XY) Py ey



» Equipped with the boundary map

8 ho(X,Y) = ho1(Y).

X

Y



» Axioms of generalized homology theory:

» (homotopy)
If f,f": X — X' are homotopic, then £, = f/.

> (excision)
For A, B C X, the inclusion A — AU B induces an isomorphism
hn(A, AN B) = hy(AU B, B).

> (additivity)
hn(UxXx, L Ya) = Uxhn(Xy, Y).

> (exactness)
For Y C X, there is a long exact sequence

o ha(Y) = ha(X) = ha(X, Y) L Byt (Y) = -

» What is homology group hn(X, Y) for SPT phases?



From SPT phases to a generalized homology theory

> ho(X,Y) := the abelian group of SPT phases over a real space X which
may have an quantum anomaly over a real space Y C X.

> We define the boundary map 9 : ho(X, Y) — h_1(Y) as the
bulk-boundary correspondence.

» This implies h—_1(Y') should be regarded as the abelian group of quantum
anomaly over a real space Y.

Ex: Superconductors over X = §? that may have an anomalous edge state
over the equator Y = S. We have

h(S*,SY)=2Zx2Z,  h_i(S") =7,
d: ho(S%,8") = h_1(S"), (n,m)— n—m.




» The ordinary bulk-boundary correspondence is the special case of the
boundary map 9 where X = D" and Y = 9D".

Sl



For generic n € Z

» The degree n € Z of the generalized homology theory h,(X, Y) can be
understood as a kind of a “degree of SPT phenomena”.

» The proper meaning of the (n — 1)-th homology is obtained by considering
what the physical phenomenon living on the boundary of the n-th

homology is.
) ) ) )
—_— n=1 — n=0 — n=-1 —
Adiabatic pump SPT phase Anomaly

Ch=1
Chern ins.

Ch=1 chiral edge
Chern ins. state

Ch=-1
Chern ins.




» hi(X,Y) := the abelian group of adiabatic pumps over a real space X
which may create a SRE state on Y C X.

» ho(X,Y) := the abelian group of SPT phases over a real space X which
may have anomalous excitation on Y C X.

» h_1(X,Y) := the abelian group of anomalous theories over a real space X
which may have a “source or sink” of an anomalous excitation on Y C X.



“Physical definition” of h,(X, Y) v.s. the axioms

Let's consider if the above identification of the group h,(X, Y) with a physical
phenomenon related to SPT phases satisfies the axioms.

v" A covariant functor (Because of the real-space picture)

v (homotopy)
If f,f : X — X’ are homotopic, then f, = f/.
v (excision)
For A, B C X, the inclusion A — AU B induces an isomorphism
ha(A, AN B) — hy(AU B, B).
v (additivity)
ha(UaXx, Ua Ya) = Uxhn(Xx, Ya).

v (exactness)
For Y C X, there is a long exact sequence

= Ba(Y) = ha(X) = ha(X, Y) D By (Y) — -+

... It looks OK.



Exactness

o' £ e! 30 o
s —> ho(Y) = ho(X) — /’Io()(7 Y) — hfl(Y) —_—

» f. and g. are induced homomorphisms of inclusions f : X — Y and
g:(X,0) — (X, Y), respectively.
» £2 is regarded as embedding an SPT phase over Y in X.

ho(Y) ho(X)



» g0 is regarded as cutting out Y from X, which leads to anomalous states
over Y from an SPT phase over X.

ho(X) : — (V)
X X

» 9° is the bulk-boundary correspondence.

\ A

Y=<

ho(X,Y)

hoy(Y)

» From these physical interpretations, we can see the long exact sequence is
compatible with properties of the SPT phases.



How useful is it?

>

>

>

So far, | have discussed the abstract mathematical structure of SPT
phases.

There are several practical merits to study SPT phases.

The real space X can be an arbitrary real space, which can not be a
manifold (a manifold is locally Euclidean). For example, we can ask what
is the classification of SPT phases, adiabatic pumps, anomalies over a
trijunction, the Klein bottle, . ...

— &

Since the generalized homology description is based on the real space on
which SPT phases defined, it is straightforward to implement spatial
symmetry (point group and space group).

= Equivariant homology hS(X,Y).

In particular, the Atiyah-Hirzebruch Spectral Sequence (AHSS), a spectral
sequence of generalized (co)homology theories, gives us a systematic way
to thinking the interplay of crystalline symmetry and SPT phases.



Summary for part 2

» Invertibility of SRE states
= an Q-spectrum
= a generalized (co)homology theory.

» The mathematical structure behind SPT phenomena such as SPT phases,
anomalous excitations, adiabatic pumps, can be understood in the
framework of the generalized homology theory.

» Open questions:
»> What is the generalized (co)homology description of the bulk-defect
correspondence?
— Probably, the KK-theory, which is like a combination of the homology
and the cohomology, does work.
Real space : homological
Parameter space: cohomological
» Can we find good physical interpretation for h_»>(X, Y), h_3(X,Y),...?

» Applying the Atiyah-Hirzebruch spectral sequence, which is a
well-developed machinery in generalized (co)homology theories, to
crystalline SPT phases gives us the comprehensive understanding of
higher-order SPT phases and LSM theorems. (Part 3)



Outline

Part 2

Part 3 The Atiyah-Hirzebruch spectral sequence for crystalline SPT phases and
LSM theorems. (if | have much time)



Atiyah-Hirzebruch Spectral Sequence (AHSS)

>

>

The AHSS [Atiyah-Hirzebruch '61] is a spectral sequence to compute a
generalized (co)homology theory h..

This is the mathematical structure behind the “dimensional reduction”
[Song-Huang-Fu-Hermele 16] and the “lattice homotopy”
[Po-Watanabe-Jian-Zaletel 17], but the AHSS goes beyond and complete
their strategy. [KS-Xiong-Gomi, Song-Fang-Qi, Jiang-Cheng-Qi,
Else-Thorngren]

In general, a spectral sequence starts from the E'-page, which is a
something computable.

We compute the nth differential (n=1,2,...))
dpg:Epg— Ep—ngin_t, d"od" =0.
The next page is defined as the homology of d”,
n+1 n n
Ep:, =Ker dy,/Im djip gni1-
Assume that this iteration converges at some E'-page.
E'sEF = ...EE=E*=...= E>.

The E*°-page approximates the homology theory h*(X, Y). (see below)



» The starting point of the AHSS is to give a filtration of the space X,
XoC X1 C--- X,
» A useful filtration is a cell-decomposition
X = {0-cells} LI {1-cells} LI {2-cells} LI - - -

with the following property: On each p-cell DP the crystalline symmetry G
behaves as an onsite symmetry of the little group Gpr over the p-cell D,
which we call a uniform cell decomposition (only for this slide).

» The p-skeleton X, is defined by

Xo = {0-cells}, Xp = Xp—1 U {p-cells}.



A uniform cell decomposition

Ex: 2d real space with C; rotation xZ? translation symmetry.

[a]

PN AR
©h idH
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00 TGO

{0-cells}

V{E-cel\rs;

Za/Zy x D"

Zy/Zy x D

—<—+—>—
Zy x D' Zyx D'

Z/Zy x D

[b]




Topological Crystalline Liquid [Thorngren-Else 16]

» Please keep in your mind the following picture:
The spatial scale a of crystalline symmetry is much larger than the scale £
of microscopic degrees of freedom.

» Of course, this is not the case in cond-mat problems, however, it can be
used to classify SPT phases because the effective theory would be
“topological”. (Under debate.)

(a) Smooth state (b) Topological limit

FIG. 1. (a) In a smooth state, the lattice spacing and the correlation length ¢ are much less than the unit cell size a and the
radius of spatial variation. (b) The topological response of a crystalline topological liquid is captured by a spatially-dependent
TQFT that captures the spatial dependence within each unit cell but “forgets” about the lattice.



El-page
» The E'-page is defined as
E;ﬁq = hg,q(Xp,Xp_l),

the (p — g)-th homology over X, relative to X,_1.

» For instance, E,}ﬁ_,, = h§(X,, X,_1) is the abelian group of SPT phases
over X, which can be anomalous over X,_;.

» For a uniform cell decomposition, we have equalities

1 Cop P P NGDJP P P P
~J J ~Y —
Er—q= [ h.2y(DP0D?)= T[] h, (D?/0DF(=SP))
jep-cells jep-cells
Gpp
= H h_J] (pt) (suspension iso.)
jep-cells

Gpp
=~ T[] h ' (D% 0D%
jep-cells

» Therefore, E;y,q is the ablian group of g-dim. SPT phases (we denote
them by SPTY) with the onsite Gpr symmetry.
J



The first differential d*

» The E'-page hosts the “local information” of SPT phenomena.
» We should properly glue the local information together, which is partly

done by the first differential

p,—q

1 =t 1
q ' Epﬁq - Ep—l,—

q-

» The first differential d can be “physically” understood and is computable.
(cf. [Song-Huang-Fu-Hermele 16, Po-Watanabe-Jian-Zaletel 17])

SPT’ ¢=0 Erl).o - Ell,() E;,o E%.n a «.J_f

SPT! q=1 Ell)A—I-EllA—lhE%.—l Ei},—l

SPT? ¢=2|Ej_, E}_#E} #E} ,

: X N -
SPT® ¢ = Ey—s El_3 ngs.‘-Eﬁfa / o
El ,|p=0 p=1 p=2 p=3 'Adia.pumps}
= B
Anomalous edge @
states of a 1d SPT
phase over a 1-cell SPT phases
/ o (-

dy_g: By g =By The adiabatic _
creation of a 1d SPT Anomalies
phase over a 2-cell

Homology
0-cell 1-cell 2-cell 3-cell




The second differential d?

» The E2-page hosts the “local information” of SPT phenomena which are
glued together over the 1-skeleton Xj.

» We should further compute the compatibility over 2-cells, which is
represented by the second differential d,i_q : E,i_q — Eg,zy,qﬂ.

> The second differential d? is also “physically” understood and computed.

SPT? q=0 E&,u E12.,u Efu E%U a _A_'_

SPT! g=1 Eg,—l E%.—l E%A E%,—l ~

SPT? ¢=2 E&,ﬁ%ﬁ\ﬁﬂifz N

N
SPT® ¢=3|Ej_s Ef_3 Ei_ 3 B3 4 x ~ - ()
EZ ,|p=0 p=1 p=2 p=3 S Cadim ums‘
p,—q \~ N\ :p‘ L
A 2d SPT phase over a \\
2-cell may have an “SPT phases ‘
anomaly at a 0-cell ) ’

&, E_ —E

P,—q P P—2,—q+1

Anomalies

Homology
@ 0-cell 1-cell 2-cell 3-cell




The third differential d3

» In the same way, we have the third differential d‘i_q : E,i_q — E§_3’_q+2.

» The third differential d* is also “physically” understood and computed.

SPT’ q=0|EBj, B}y Ef, Ei, a - -
SPT' ¢=1|E§_, B
SPT? ¢=2|Ef_, {2

SPT? ¢=3|EF}_, F}_ s ) N o
Eg,—q|P=U p=1 p=2 p=3 Adia.pumps‘
—_— { ’ —
The adiabatic t
SPT phases
creation of a 2d SPT ‘“ P
3 3 3 phase over a 3-cell [
dy 4 E, ;= E, 3 _qb may be equivalent to
an SPT phase over a anomalies

0-cell

Homology

E*°-page 0O-cell 1-cell 2-cell 3-cell




Filtration of the homology group

v

E°°-page itself does not provides the classification of SPT phenomena.

Introduce the following subgroups of hS (X, Y),
Fohp :=1m [hS(Xp, Xo N Y) = hS(X,Y)],  p=0,1,....

This has the clear physical meaning. For instance, F,ho is the classification
of SPT phases over the p-skeleton X, which persists after being embedded
in the whole space X.

We have a filtration of the homology group
0 C Fohy C Fihy C --- C Fyh, = hS(X,Y),

where d is the space dimension of X.

The following relation connects the E°°-page and the homology group.
Fohn/Fp—1hn =2 EJ5_p.

The E*°-page has good physical meanings.



Higher-order SPT phases

» E;° . The classification of (d — p + 1)th-order SPT phases. (cf.
Huang-Song-Huang-Hermele)

> Ex: 3d with point group symmetry (without translation symmetry):

Foho C Flh() C tho C th()

» This unifies the terminology of “strong” and “weak” SPT phases and
higher-order SPT phases.



Ex: the classification of higher-order Tls with magnetic point group
symmetry via the AHSS [Okuma-Sato-KS, cf. Cornfeld-Chapman, KS]
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LSM type theorems

» LSM-type theorems forbid the system with a sort of dof having a unique
symmetric gapped ground state in the presence of translation symmetry
and others. [Chen-Gu-Wen 11, Watanabe-Po-Vishwanath-Zaletel 15]

> The group Eg2 4 is the classification of the LSM theorem with crystalline
G symmetry. (cf. Po-Watanabe-Jian-Zaletel 17, )

> See [KS-Xiong-Gomi 18, Else-Thorngren 19, Jiang-Cheng-Qi 19] for the
detail.

» “ A LSM theorem as a boundary of an SPT phase” [Metlitski-Thorngren,

N

» Using the AHSS, one can systematically classify the LSM-type theorems
for a given space group and onsite symmetry. Many symmetry classes are
remain unclassified.
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Summary for part 3

» The AHSS gives us a useful tool to study the SPT phases and LSM
theorems with crystalline symmetry with respect to high-symmetry regions
in the real space.

» The differentials of the AHSS can be physically understood, thus they are
computable from physical arguments. See KS-Xiong-Gomi for various
worked examples of higher-differentials.

» The E*°-page itself has a physical meaning. It represents the classification
of higher-order SPT phases, anomalies, and adiabatic pumps. In
particular, E] 4 is the classification of LSM theorems.



