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| am asked to give 2 hours lecture on

formal aspects of resurgence

Resurgence

Technique to resum non-convergent series

ubiquitous!

JMany possible applications in various contexts



Different expansions have different stories...

Physical setup:

Field Theory, String theory, Statistical system, etc... ?

Expansion parameters:

Coupling constant, N, N, a’,time, T, u, € ,etc... ?

around where?

0, oo, or finite... ?

Technical setup:

(path) integral or differential/difference eq... ?



Different expansions have different stories...

Physical setup:

Field Theory, String theory, Statistical system, etc... ?

Expansion parameters:

Coupling constant) N, N, a’,time, T, u, € ,etc... ?

?
around...: Focus:

oo, or finite point... ? | Weak coupling expansion
in Quantum Field Theory

Technical setup:

(path) int@ar differential/difference eq... ?
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perturbative series in QFT
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4. Preview of day 2 (Application to QFT)



1. Expectations on weak coupling
perturbative series in QFT

——

* Perturbative series in typical QFT
—< =Borel resummation

*Borel summability in QFT?

—



Perturbative expansion in QFT

—— Typically non-convergent  (pyson s

—— Naive sum of all-orders - divergent



Why perturbative series is not convergent
~Dyson’s original argument (very rough)~  [byson’52]

World w/ e? > 0 World w/ e? < 0

:\«’—" :«’—
\

repulsive attractive, prefer to be dense

looks qualitatively different |:> non-analytic?



Why perturbative series is not convergent
~technical reasons~

@D (# of n-loop Feynmann diagrams) ~ n!

proliferation

@ 3FFeynmann diagrams contributing by ~n!

Ex.) QCD
renormalon

[ Fig.20.3 in Weinberg’s book,
cf. Takaura-san’s lectures ]



Best way by Naive sum = Truncation

N-th order approximation of a function P(g):
“error” of the approximation:

on(g) = Py+1(g) — Py(g) = CN+19N+1

Optimized order N.,: (given g)

0 N>1 0

SyOn@| =0 mmy —rogey +Niogg)| =0



Best way by Naive sum = Truncation (Cont’d)

optimize

9
Py(g) = Xp=oCr g’ mm) - (ogoy + Nlogg)y| =0

N=N,
In QFT, typically
c, ~L1AY (£ > 1)



Best way by Naive sum = Truncation (Cont’d)

optimize
Pn(g) =Xt=ocr 9" mm) aizv (logey + Nlogg)N\NzN* =0
In QFT, typically
c, ~L1AY (£ > 1)
Then,
1

9,
0= B_N(NlOgN — N + Nlog(Ag)) ‘N=N* ‘ N. = Ag



Best way by Naive sum = Truncation (Cont’d)

optimize

0
Pv(9) =Zhoce g’ mmp oy Qogey+Noggy| _ =0
In QFT, typically

c, ~L1AY (£ > 1)

Then,

3 1
0= B_N(NlOgN — N + Nlog(Ag)) ‘N=N* ‘ N. = Ag

Error of the truncation:
1

On,(9) = cy 419Vt ~ eV = e A9

Non-perturbative effect



Best way by Naive sum = Truncation (Cont’d)

optimize

0
Pv(9) =Zhoce g’ mmp oy Qogey+Noggy| _ =0
In QFT, typically

c, ~L1AY (£ > 1)

Then,

3 1
0= B_N(NlOgN — N + Nlog(Ag)) ‘N=N* ‘ N. = Ag

Error of the truncation:
1

On,(9) = cy 419Vt ~ eV = e A9

Non-perturbative effect

Is there a good way to resum perturbative series?



General questions in this lecture

What does perturbative series actually know?

*Is there a way to obtain exact answer
from information on perturbative expansion?

“If yes, how?



More precise pusimredise question

Perturbative series around saddle points:

O(g) ~ > céo)gg + ) e—51(9) S Céf)gﬁ
(=0 ITesaddles (=0



More precise pusimredise question

Perturbative series around saddle points:

O(g) ~ Z Vgt + Y e S@ Y D
Iesaddles /=0

Can we get the exact result by using the coefficients?

= What is a correct way to resum the perturbative series?

(~ continuum definition of QFT?)

This lecture (day 2) = To give a partial answer



A standard resummation

Borel transformation:
O o0

O(g) = > cg® " mm) |BO®t) = C jate-1
12;0 ‘ 2 EZ:O (a+ ¢)

Borel resummation (along 9):

eieoo ot
SgO(g) = / dt e 9 BO(t)| (usually, 8 = arg(g) = 0)

O




Why Borel resummation may be nice
(Let’s take 8 = arg(g) )

0

e0o ot 00
560 (9) :/o dt e 9 BO(t) BOt) = I‘(a,ci g)ta-l-f—l
(=0

(D Reproduce original perturbative series:

$0() = 3 = [Tt = 3 gt
0 g)= tt e 9= Cypg
i=o " (a+1£)Jo (=0




Why Borel resummation may be nice
(Let’s take 8 = arg(g) )

eV 0 t 00 .
= dt e 9 t t) = £ qati-1
S0@) = [ dre 1BOwW)  Bo® =3 ot

(D Reproduce original perturbative series:

$0() = 3 = [Tt = 3 gt
0 g)= tt e 9= Cypg
i=o " (a+1£)Jo (=0

(2 Finite for any g if

1. Borel trans. is convergent

2. Its analytic continuation does not have singularities
along the contour
3. The integration is finite “Borel summable (ong 6)"

—

related to exact result?



Some simple examples

1. Analvtic function

O(9) = ¢g®  convergent inside radius of convergence
¢

= (Borel resummation)



Some simple examples

1. Analvtic function

O(9) = ¢g®  convergent inside radius of convergence

= (Borel resummation)

2. Incomplete gamma function

1 1

14 ’
O(g) = p I‘( g) Zf'( g9)



Some simple examples

1. Analvtic function

O(9) = ¢g®  convergent inside radius of convergence

= (Borel resummation)

2. Incomplete gamma function

1 1

—e9 ¢
O(g) = p I‘( g) Zf'( g9)
) BO(t) = Z( t)f = j Borel summable along R,

_ 1
g

SoO(g) = / dt e IBO) = = / dt —— = 0(9)



Expectations in typical QFT  «ioofi 7o)

Non-Borel summable due to singularities along R,




Expectations in typical QFT  «ioofi 7o)

Non-Borel summable due to singularities along R,

Borel plane: A
77 Py

X—X—X X—K——H——

?? ??




Expectations in typical QFT  «ioofi 7o)

Non-Borel summable due to singularities along R,

Borel plane: A
5
2? .
———————————————— >
e =y
__________________ }
?7? -




Expectations in typical QFT  «ioofi 7o)

Non-Borel summable due to singularities along R,

Borel plane: A
77 Py

27

Integral depends on a way
to avoid singularities



Expectations in typical QFT  «ioofi 7o)

Non-Borel summable due to singularities along R,

Borel plane: A
77 Py

??

Integral depends on a way
to avoid singularities

_ 8
Sy—00(g) = / dt ¢ s Bo() M) (Residue) ~ e 9
Non-perturbative effect?



Interpretation of Borel singularities

1
Z(g) = /che‘ES["’] ~ 3 cpg
14
Large order coefficient:
=S[¢]—-(¢+1)Ing
me{ 1 Z(g) = —j{dQ/D@ (4 — 00)

[Lipatov '77]




Interpretation of Borel singularities

- ipatov’
Z(g) = /DCDe_ES[CD] ~ chgﬁ [Lipatov '77]
1
Large order coefficient:
13[¢]-(¢+1)Ing
2%@]{ 41 Z(9) = —j{dQ/Dqﬁe (£—>OO)

0S £_|_1_
“asled-Ginimg, [ %] o s+ -0 )

~ e



Interpretation of Borel singularities

Z(g) = /DCDe_%S[q’] ~ 3 ¢y [Lipatov '77]

Large order coefficient: ¢
27-‘-@7{ r14(9) = —j{dg/D¢e LSlgl-(t+1) Ing (¢ = 50)
~ oS8+ 1) Ing. [ (;i¢ - —g—S[chtF—*l—o ]

= (D INEAHD =D (56,1~ D~ g1 (§[g,])~EFD



Interpretation of Borel singularities

Z(g) = /D(De—%S[CD] - ZCEQK [Lipatov '77]

Large order coefficient: g
“ me{ ri2(9) = —j{dg/Dqﬁe cS[el-(t+1) Ing (£ = 00)
~ e—g%s[cb*]—(ﬁ—l—l) In g« [ ?Z¢:¢*=o, —ésw*Hg;l _ 0 ]

= (D INEAHD =D (56,1~ D~ g1 (§[g,])~EFD

) ! [t
) Bz~ (Sl = ——
14

Sl«]

Nontrivial saddle point gives S[o+]
Borel singularities
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Resurgence

-
-
-
-
_——————
-
-
-

_i
(Ambiguities) ~ (Residue) ~e 9

Idea Of resurgence: (explicit examples in next slides)

This is precisely canceled by ambiguities of perturbative series
around other saddle points (~ non-pert. sector):

(perturbative ambiguity) = —(non-perturbative ambiguity)

‘ (unambiguous answer)



Ex.1: Stirling’s formula v.s. Exact gamma function

logn! ~nlogn



Ex.1: Stirling’s formula v.s. Exact gamma function
Improved Stirling’s formula:

[cf. Nemes "14]
Liog ? A 2
logM(z) ~ zlog z—z—= 109 — +Ipert(2) +>_ > cpe™™m?
2 2T ~ =
—1
A z
—_ e BQH CT—; = |_
Ipert(2) = Z ST -
—12n(2n — 1)z e =—41/m
+ _
(2n)! n cE = 0—
~ Zn: 2n—1 cm = —1/m
¢y =0

Stokes phenomenal

(Jump of the form of asymptotic expansion)



Ex.1: Stirling’s formula v.s. Exact gamma function
Improved Stirling’s formula: [cf. Nemes '14]

oo

1 .
loglM(z) ~ zlog Z_Z_E log % +Ipert(2) —|—Z Z et2mimz
+ m

—1
A Z
& B + [z
Ipert(2) = ) 2n : Cm =
—=12n(2n — 1)z2n—1 e =—41/m
+ __

(2n)! cE = 0—

~ ; L2n—1 cm = —1/m
cm = 0

Stokes phenomenal

BOFE| resum. |n erturbat|ve SeCtOI’ (Jump of the form of asymptotic expansion)
ez‘argz—loo t Jiargz—1 ozt 1
S —IZ=/ dte_ZBItzf dt _ 4=
argz 11p(2) 0 p(t) 0 ¢ th—l t+2}
It is known for Re(z)>0, [Binet’s formula]
1 z oo ezt 1
logl(z) = z21l00z—2z——10g — / dt 4=
(=) ) 2 927r+0 t [et—l t+2}

What for Re(z)=0?



Perturbative sector:

A | t
X >
X
,,,,, argz 1
- —>
. X
re—1
9% Too emEL 1 11
st = [ T -]




Perturbative sector:

A | t
X .
X
,,,,,, argz—1
= —>
. X
ara.—1
9% Too e ] 1.1
Sargz—lfp(z)zfo dt ; {et—l_;_‘_i

Borel ambiguity at argz—1 = 7/2 :

(SW/2-|—0_|_ - 71’/2—0_'_)[17(2)

0]
= 2 Resi—ommi (¢ BIn(1))

m=1

— _ Z _6—27T7,mz
=1 m




Perturbative sector:

N N —1
| 1 z
X O ,—2Timz
,,,,, 7 Inp(2) = )
,,,, . m=1
X argz—1
- > Inp(2) = 0—
57 X i e2mimz
tpole = 2mi Inp(2) = —
pole #0 NP
X m=1 ™M
iargz—1 — st
e 00 e % 1 1 1 . -
Sargz-11p(2) =fo dt ——| 55—+ Stokes phenomena generates ambiguities

Borel ambiguity at argz—1 = 7/2 :

(Sﬂ'/2+0+ - 71’/2—0_'_)[17(2)

00
- Z ReStZQmWi (e_ZtBIp(t))

m=1

— Z _6—27T7,mz
m=1""




Perturbative sector:

A | t
X >
X
,,,,,, argz"1
-2 —>
. X
|
e®9% Too e 1 11
sapei = [ e

Borel ambiguity at argz—1 = 7/2 :

(Sﬂ'/2-|—0_|_ - 71’/2—0_'_)[17(2)

00
- Z Rest=2m7m' (e_ZtBIp(t))

m=1

— Z _6—27szz
m=1""

A Z_l
o e—27rimz
Inp(z) = )
m=1
Inp(2) = 0—
o0 eQﬂ'imz
I = _
np(2) mZ=:1 -

Stokes phenomena generates ambiguities

Ambiguity at argz"' = x/2:

Inp(2)larg-1=1+40, = INP(2)larg.—1=1_0
oo 1 i
=+ Z _e— mwimz
m=1""



Perturbative sector:

A | t
X >
X f”””‘—
,,,,,, argz"1
= —>
. X
; -1
e®9% Too e 1 11
R T S

Borel ambiguity at argz—1 = 7/2 :

(Sﬂ'/2+0+ - 71’/2—0_'_)[17(2)

00
— = Z ResSi—omni (e_ZtBIp(t))
m=1

Canc

A Z_l
o e—27rimz
Inp(z) = )
m=1
Inp(2) = 0—
o0 eQﬂ'imz
I = _
np(2) mZ=:1 -

Stokes phenomena generates ambiguities

Ambiguity at argz"' = x/2:

s

INP(Z)|argz_l=

—|—0+ T INP(Z)|argz_1=%—O+

e/ed! (similar forargz™ —7/2)




An example more like QFT

[Cherman-Dorigoni-Unsal 14,

Od SinE‘GordOn mOdE|: Cherman-Koroteev-Unsal '14]




An example more like QFT

[Cherman-Dorigoni-Unsal 14,

Od Sine-GOrdOn mOdE|: Cherman-Koroteev-Unsal '14]
1 s 1 2 1 1
Z(g) = — > do e 29" x:le 49 [ (_)
v97-3 V9 4g
Saddle point:
d . » i
0= —sin“zx = sin (2x«) ‘ r« =0, £—
d$ L=« P




An example more like QFT

[Cherman-Dorigoni-Unsal 14,

Od Sine-GOrdOn mOdE|: Cherman-Koroteev-Unsal '14]
1 s 1 2 1 1
Z(g) = — > do e 29" x:le 49 [ (_)
v97-3 V9 4g
Saddle point:
d . » i
0= —sin“zx = sin (2x«) - r« =0, £—
d$ L=« P
“Action”: (S(as) — ~ sin? x)
S(x=0)=0 trivial

s 1
S (:v = iz) = Non-perturbative



Expansion around the saddle pts:

X (0) 6, AR (1) ¢
Z(g)~ > ¢y ’g +e 29y ¢ g 77
=0 | ‘ /=0 |
| |

2




Expansion around the saddle pts:

= (0) ¢, —2& <= (1)
Z(g)~ D ¢y g te Yy ¢lgt 77
b= ]\ t=0 J
Y Y

2

Trivial saddle: 20
— (+1/2)<2° ,
Z(Dg,=0 = V2r Z T (0+ (/227 =

(0)

11
‘ Bdg(t) = Z E tﬁ V21t oFy (5,5,1;275)

Po(g)



Expansion around the saddle pts:

= (0) ¢, —2& <= (1)
Z(g)~ D ¢y g te Yy ¢lgt 77
b= ]\ t=0 J
Y Y

2

Trivial saddle: Dy
— (+1/2)<2° ,
Z(Dg,=0 = V2r Z T (0+ (/227 =

Po(g)

(0) 11
‘ Bdg(t) = —tﬁ V21t oFy (5, 5, 1; 2t>

| [T
non-Borel summable!

DN NDN_D_D
7 NV VV V V N7

t=1/2




]

1
So®Po(g) = —

el
g o

0

o0

t
dt e 9 BPg(t)

11

g = |gle®

)

DNNNDN_D_D

7N VOV VNS

t=1/2



A\ | t
B 1 refso 4
Sydo(g) = —/O dt ¢ 9 Bdg(t)
g

— 11

g = |gle®

Ambiguity:

1 D2
(Sgt+ — So-) Polg) = e 29x

11
dte 9 ~F 1; —2¢ 0
/ © 21(22 )75

Related to contribution from x, = i% :



Expansion around nontrivial saddle
{ —S(x) — e 2|19| 024 xx = 0 (Q: |9|ei9)

1 1 0 T
—S(:C) — e T 2g % 62|g| - (CIZ +5 ) + Tx = :|:§



Expansion around nontrivial saddle
{ —S(x) — e 2|19| 024 xx = 0 (Q: |Q|eﬂ9)

1 1 0 T
—S(:C) — e T 2g % 62|g| - (CIZ +5 ) + Tx = :|:§

To pick up saddles, change the integral contour to steepest descent s.t.
[ 1. passes the saddles w/ appropriate angle

— 2. Keep Im[S(x)] to avoid oscillation

3. Keep the final result (use Cauchy integration theorem)

N ‘£ N ‘£

—

)2 /2 TR Y 77




Appropriate contour = Lefschetz thimble

[Extension to path integral: Witten ’10]

" 1. Extends real x to complex z

dS(z)
dz

2. Critical pt. : =0

3. Associated w/ critical pt., Funique Lefschetz thimble J; :

dz(t) _ 05(z)

with z(t — — —
- dt Oz Z( OO) o




Appropriate contour = Lefschetz thimble

[Extension to path integral: Witten ’10]

" 1. Extends real x to complex z

dS(z)
dz

=0

3. Associated w/ critical pt., Funique Lefschetz thimble J; :
dz(t)  0S(z)

2. Critical pt. :

with z(t - —o00) = 27

Y

_ dt 0z
Properties:
d dz0S dzOS
a) ImS(2)|; =1ImS(z)) (s o (5 -9 = FET - T8 —o)
d dz0S  dz0S 0S50S
b) ReS(z)|JI > ReS(zy) <$Re5 x o= 2$$>0>
c) Decomposition of cycle' (if we are not on Stokes line)
/ g n]/ (TL] S Z)
Iesaddle J1

may jump as changing parameters



riate contour = Lefschetz thimble

www.shutterstock.com - 769591429



Dual thimble = steepest ascent

[Extension to path integral: Witten ’10]

" 1. Extends real x to complex z

dS(z)

=0
dz

z=zy

2. Critical pt. :

3. Associated w/ critical pt., Funique dual thimble K7 :

dz(t) _QS(Z)
_ dt 0z

Cbropertis:

a) ImS(z)|KI =ImS(zy)
b) ReS(z)|KI < ReS(zy)

, With z(t - —00) = 25

c) Decomposition of cycle: (if we are not on Stokes line)

/ = > nI/, ny = intersection § of (C, Ky)
¢ Jesaddle 7Y



Thimble structures in the toy model

[similar to fig.1 in Cherman-Dorigoni-Unsal '14]

arg(g)

= +0.1

= —-0.1

arg(g)

05 10 1.5

-1.5-1.0-0.5 0.0

-1.5-1.0-05 00 05 1.0 1.5

Re(z)

Re(z)



Thimble structures in the toy model

[similar to fig.1 in Cherman-Dorigoni-Unsal ’14]

arg(g)

= +0.1

= —-0.1

arg(g)

|||||||||||||||| L 1 4
T 17
\ J
\ =
i { —
() ) 1
TV — e e e e e e e e e e iy &
S 10
| \ ] ﬁw
K I o
] 1<
1 | L
\ 1
Iy
)
Q C
¥ o
S * o=
© 0
Q o
Q
O ©
= ll._llr .I_I._l._”"..ll_h_l_lh.l_lu_-u_ ||||||||| 3 5
e 1
I ]
___ 19
S(QVINN H '
/ N 1@
|f|l|||||l|JD
Iy
(@) 10
I
~ 1d
' 1"
] I
2 |0
o - =3 - o~ |

Re(z)

Re(z)



Thimble structures in the toy model (Cont’d)

sl y -l
1&,\\1_ yan A iﬁ
IS
::IL \1‘. x’} | KE ’,/ "

1h N
_= I .,
! ,
Ny
A

D_

-1}
-2
_31

-15-1.0-0.5 0.0 05 1.0 15
Re(2)

w
ey g
-

-'-'-'-'-I-'-__'—_-",.'.-I-*.-.'_
.

-15-1.0-05 0.0 05 1.0 15
Re(z)



Contribution from nontrivial saddle

——

*Either x=+11/2 or -1t/2 contributes

 Contours smoothly change

— e — - —
—
e e r—— e —

in the ranges 0<0<m and -t<B6<0 SIS LS i =

“ Contours through nontrivial saddles
are opposite between 6<0 & 6>0




Contribution from nontrivial saddle

——

*Either x=+11/2 or -1t/2 contributes

 Contours smoothly change

e e r—— e —

e — =

in the ranges 0<0<m and -t<B6<0 SIS LS i =

“ Contours through nontrivial saddles
are opposite between 6<0 & 6>0

—

Z(g)’x*:i% — EO:OO




——

—

Contribution from nontrivial saddle

*Either x=+11/2 or -1t/2 contributes

 Contours smoothly change
in the ranges 0<B<nt and -m<6<0

“ Contours through nontrivial saddles

are opposite between 6<0 & 6>0

B + _2L & (1) ¢

e 29 Z c;’g

D=3 =~ | % (1) ¢

—e 29 Z c;’g
{=0

—

o e i —— . e . .

e — — = —

(6 < 0)

(6 > 0)

3 Jump at 8=0!! (“Stokes phenomenon”)

Expansion around nontrivial saddle is also ambiguous at 6=0



Expansion around nontrivial saddle

s (CDTE+1/22 |
+e 294/27 Z rol+ 1)|_(1/2)2 e 29P1(g)



Expansion around nontrivial saddle

L (CDTE+1/22 |
+e 294/27 Z rol+ 1)|_(1/2)2 e 29P1(g)

DN NN\
7N VOV VN

\ 4

Borel trans. itself is OK but Fambiguity at 6=0
because of Stokes phenomena



Comparison of ambiguities (at 8=0)

Trivial saddle Nontrivial saddle
1 [T

DNNNDN_ND_D
7 N VOV VNS

t=1/2

By the branch cut, ambiguity:

(Sgt+ — So-) Po(9)

_LQ V2 t 11
= ’ Trf dt e 92F1(§§1—2t>




Comparison of ambiguities (at 8=0)

Trivial saddle
i 2

DNNNDN_ND_D
7 N VOV VNS

t=1/2

By the branch cut, ambiguity:

(Sgt+ — So-) Po(9)

_LQ V2 t 11
= : Trf dt e 92F1(§§1—2t>

Nontrivial saddle
1 [T

NN NN\
7NV VOV VN

t=—1/2

v

By the Stokes phenomena,

) { tie 25yP1(a) (60 < 0)

NS

1
—ie 20Sp®1(g) (0 > 0)



Comparison of ambiguities (at 8=0)

Trivial saddle Nontrivial saddle
) 't ! Lt

DNNNDN_ND_D NN NN\
7 N VOV VNS NV VWV

v

By the Stokes phenomena,

1
+ie 205S¢®1(9) (6 <0)
g —ie 20Sp®1(g) (0 >0)

By the branch cut, ambiguity:

(So+ — So—) Po(9g)

_LQ 2 1 1 ..

1 2027 L 11
_2ie 23Sy dq(g) = — VT, ] dt e 9 oF) (5 St Qt)
g

= — (Sg+ — So-) Pol9)




Comparison of ambiguities (at 8=0)

Trivial saddle Nontrivial saddle
) 't ! Lt

DNNNDN_ND_D NN NN\
7 N VOV VNS NV VWV

v

By the Stokes phenomena,

1
+ie 205S¢®1(9) (6 <0)
g —ie 20Sp®1(g) (0 >0)

By the branch cut, ambiguity:

(Sg+ — So—) Po(g)

_LQ 2 1 1 ..

1 2027 L 11
_2ie 23Sy dq(g) = — VT, ] dt e 9 oF) (5 St Qt)
g

= — (So+ — So—) Po(g)




Resurgence

(Ambiguity from trivial saddle point)

—(Ambiguity from nontrivial saddle point)

Resummation from a saddle point may be ambiguous
but the ambiguity is cancelled by other saddles



Resurgence

(Ambiguity from trivial saddle point)

—(Ambiguity from nontrivial saddle point)

Resummation from a saddle point may be ambiguous
but the ambiguity is cancelled by other saddles

In the toy model, resurgence gives the exact result:

1
Z(g € R>p) = gﬁr& SpPo(g) Fie 29SpP1(g)| = ReSgPo(yg)

It’s natural to ask if resurgence can be applied to QFT
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1
(Sg+ — So-)Po(g) = 2ie 2955P1(g)

mm) Relation between perturbative coefficients
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Remark 1/4: perturbative <> non-perturbative

Ambiguity cancellation:

1
(Sg+ — So-)Po(g) = 2ie 2955P1(g)

mm) Relation between perturbative coefficients
around trivial & nontrivial saddles

Note: Many talks on resurgence by physicists emphasize this point.

Then some physicists have an impression that definition of resurgence is
relations between perturbative and non-perturbative sectors.

If there are ambiguities, there should be cancellations of them but if not,
such relations do not have to exist.

Ex.) Ground state energy in system w/ SUSY breaking by non-perturbative effects,
Seiberg-Witten prepotential, SUSY obs. in 4d N=2 & 5d N=1 theories on sphere [vH 16]

[Some deformations have nontrivial structures: Dunne-Unsal , Kozcaz-Sulejmanpasic-Tanizaki-Unsal, Dorigoni-Glass ]



Remark 2/4: The toy model is useful but very special

*We can compute all order perturbative coefficients

— In realistic QFT, computing higher order itself deserves
to write a paper

- Jonly one nontrivial saddle points

J 00 many saddles in QFT
“ Perturbative series in all the sectors are related
— Resurgence doesn’t relate different topological sectors

*We can explicitly draw thimbles

— impossible in more than two dim. integral

" Perturbative sector knows everything: Z(g) = ReS,®,(9)

— not true in more complicated cases
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Analvtic function:

Y fnz", |z| < radius of convergence
n

f(z) = -
(analytic continuation) everywhere
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2

—> {1, 2z, 2%, --- } are “good basis” to express f(z)



Remark 3/4: A “Mathematical” viewpoint

Resurgence ~ “Extension” of analyticity

Analvtic function:

Y fnz", |z| < radius of convergence
n

f(z) =+
(analytic continuation) everywhere

—

2

—> {1, 2z, 2%, --- } are “good basis” to express f(z)

For more general function, we need more “basis”:

!
{zﬁ, Hlogz, 2le e}

Ex.) The toy example needed {g", g”e_Q_lg}



Remark 4/4: Finite order approximation
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BO(t) = § t
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To compute Borel trans.,

we need all order perturbative coefficients in principle.



Remark 4/4: Finite order approximation

o

— Cy a+/0—1
BO(t) = g t
( ) /=0 r(a + e)

To compute Borel trans.,

we need all order perturbative coefficients in principle.

But when we know only up to finite order,

we can use Pade approximation for Borel trans.:

(“Borel-Pade approximation”)

Prn(t) = k=0

where coefficients are determined s.t.
small-t expansion gives the one of Borel trans.



Remark 4/4: Finite order approximation (Cont’d)

[Fig.4 in Cherman-Koroteev-Unsal '14]

Result in the toy model:

Z[g]

34

3.0

29
' » (g*) Resurgence

« (g”) Resurgence

28

. « 0(g") Resurgence
= — Exact Result
26

q
Z[g]
3.4
iz ! Ir'J » Olg’) Resurgence
/ ' Exact Result

cwseeee Olg?) Perturbative
----= 0ig") Perturbative
_____ 0(g*®) Perturbative




Remark 4/4: Finite order approximation (Cont’d)

[Fig.5 in Cherman-Koroteev-Unsal '14]

Result in the toy model:

Z[g]
3.0

e 0(g%°) Resurgence

— Exact Result
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4. Preview of day 2 (Application to QFT)



Summary of day 1

* Perturbative series in QFT is typically non-convergent
 Borel singularities <> Nontrivial saddle points

- At first sight, Borel resummation seems usually dead
& ambiguous due to singularities along R+

* But it may be resurgent.
The ambiguities from a saddle pt. may be cancelled
by other saddles

- We should rewrite (path) int. in terms of Lefschetz thimble



More than weak coupling expansion in QFT

We could apply resurgence to other types of expansions.

For example,

—

- 1/N expa NSION (~string perturbation if AdS/CFT is correct)

* strong coupling expansion (~a’-expansion if AdS/CFT is correct)
- Weak coupling expansion in gravity (string)

* high/low temperature expansion

" €-expansion

* Derivative expansion in effective theory  atc



Preview of day 2
(Application to QFT)



Q. Can we apply resurgence to QFT?

This is essentially asking two questions:

Q1. Can we obtain resummation w/o ambiguities
by resurgence?

Q2. If yes,
is the resummation the same as exact result?



Q. Can we apply resurgence to QFT?

This is essentially asking two questions:

. Can we obtain resummation w/o ambiguities
resurgence?

Q2. If yes,
is the resummation the same as exact result?




Q1. Can we obtain resummation w/o ambiguities
by resurgence?

(Ideal) steps to answer Q1:

1. Find all critical pts.
(including configurations outside original path)

2. Take complex coupling &
rewrite path integral in terms of Lefschetz thimble

[done for pure CS, Liouville, some QM: Witten, Harlow-Maltz-Witten]

3. Compute perturbation around contributing saddles

4. Check cancellation of ambiguities

Sounds difficult? Sometimes we can simplify it.
See you next week! Thank you for attention!!



