Probing long-lived particles at Higgs factories

Zeren Simon Wang (APCTP)

Phys.Rev.D 101 (2020) 3, 035003 work with Kingman Cheung

August 5th, 2020 KEK-PH workshop, Online

asia pacific center for theoretical physics

< □ > < /□ >

Z.S. Wang

Probing long-lived particles at Higgs factories

1. Motivation

æ

イロト イヨト イヨト イヨト

- New-physics (NP) models including SUSY predict new heavy fields
- No new fundamental particles found yet at the LHC
- ullet More stringent limits placed on NP models, e.g. $m_{{\widetilde q},{\widetilde g}}\gtrsim 1~{\rm TeV}$
- LHC focus: promptly decaying NP particles

 $\begin{array}{l} \mbox{Perhaps this assumption is wrong} \\ \rightarrow \mbox{Long-Lived Particles!} \end{array}$

- LLPs: produced, travel a macroscopic distance, and then decay \rightarrow Displaced Vertices
- LLPs appear in many extensions of the SM: heavy neutral lepton, dark photon, neutralino, light Higgs, ...
- Often motivated by the small neutrino masses or dark matter
- Causes of the long lifetime:
 - Feeble couplings • Small phase space
 - Heavy mediators

. . .

• CEPC/FCC-ee: large and clean samples of Higgs bosons

2. LLP searches at Higgs factories

- 4 目 ト - 4 日 ト

Future lepton colliders and the Higgs mode

- LHC has been a huge success
- Next-generation e^-e^+ colliders: CEPC, FCC-ee, ILC, etc.
- $\sqrt{s} = 91.2 \text{ GeV} (Z-\text{pole})$, 160 GeV (*WW* mode), 240 GeV (Higgs mode), etc.

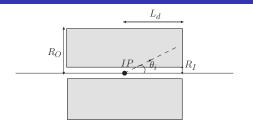
production		Zh (main)			
$e^-e^+ ightarrow$		$\nu \bar{\nu} h, e^- e^+ h$ (VBF)			
\sqrt{s} [GeV]		240			
N _h	CEPC	$1.14 imes10^{6}$			
INh	FCC-ee	1.14 × 10			

- Focus on exotic Higgs decays $h \rightarrow XX$. X a long-lived scalar
 - a Higgs-portal model: a light scalar
 - neutral-naturalness models: the lightest mirror glueball

General calculation procedure

$$N_{\text{s.e.}}^{\text{IT}} = \mathcal{L}_h \cdot \sigma_h \cdot \text{Br}(h \to XX) \cdot \langle P[s.e. \text{ in } \text{IT}] \rangle \cdot \epsilon^{\text{IT}}$$

$$N_{\text{s.e.}}^{\text{HCAL}} = \mathcal{L}_h \cdot \sigma_h \cdot \text{Br}(h \to XX) \cdot \langle P[s.e. \text{ in } \text{HCAL}] \rangle$$


$$N_{\text{s.e.}}^{\text{MS}} = \mathcal{L}_h \cdot \sigma_h \cdot \text{Br}(h \to XX) \cdot \langle P[s.e. \text{ in } \text{MS}] \rangle$$

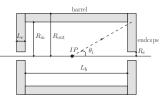
- ϵ^{IT} : cut efficiency of the IT
- For the IT, require at least one DV to constitute a signal event
- For the HCAL/MS, require two DVs

$$\langle P[s.e. \text{ in IT}] \rangle = \frac{1}{N^{\text{MC}}} \sum_{i=1}^{N^{\text{MC}}} \left(P[X_i^1 \text{ in IT}] + P[X_i^2 \text{ in IT}] - P[X_i^1 \text{ in IT}] \cdot P[X_i^2 \text{ in IT}] \right)$$

$$\langle P[s.e. \text{ in HCAL}] \rangle = \frac{1}{N^{\text{MC}}} \sum_{i=1}^{N^{\text{MC}}} \left(P[X_i^1 \text{ in HCAL}] \cdot P[X_i^2 \text{ in HCAL}] \right)$$

$$\langle P[s.e. \text{ in MS}] \rangle = \frac{1}{N^{\text{MC}}} \sum_{i=1}^{N^{\text{MC}}} \left(P[X_i^1 \text{ in MS}] \cdot P[X_i^2 \text{ in MS}] \right)$$

Detector	<i>R</i> _I [mm]	<i>R_O</i> [m]	L_d [m]	V [m ³]	
CEPC	16	1.8	2.35	47.8	
FCC-ee IDEA	17	2.0	2.0	50.3	


$$P[X_i \text{ in } \mathsf{IT}] = e^{-L_i/\lambda_i^t} \cdot (1 - e^{-L_i'/\lambda_i^t})$$

$$L_i \equiv \begin{cases} R_I, \text{ if } |L_d \tan \theta_i| \le R_I \\ d_{\mathsf{res}} = 5 \ \mu m, \text{ else} \end{cases}$$

$$L_i' \equiv \min(\max(R_I, |L_d \tan \theta_i|), R_O) - L_i$$

$$\lambda_i^t = \beta_i^t \gamma_i \tau_X$$

HCAL and Muon spectrometer

Detector	<i>L_b</i> [m]	<i>L_e</i> [m]	<i>R_e</i> [m]	$R_{\rm in}$ [m]	$R_{ m out}$ [m]	V [m ³]
CEPC	5.3	1.493	0.50	2.058	3.38	224.5
FCC-ee IDEA	6	2.5	0.35	2.5	4.5	580.1
CEPC	8.28	1.72	0.50	4.40	6.08	854.8
FCC-ee IDEA	11	1	0.35	4.5	5.5	534.9

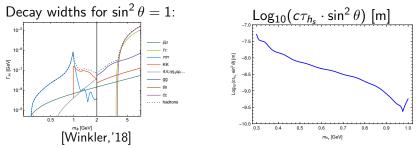
$$P[X_i \text{ in HCAL/MS}] = e^{-R_e/\lambda_i^z} \cdot (1 - e^{-L_i^\alpha/\lambda_i^t}) - e^{-R_e/\lambda_i^z} \cdot (1 - e^{-L_i^\beta/\lambda_i^t})$$

$$L_i^\alpha \equiv \min(\max(R_e, |(\frac{L_b}{2} + L_e) \tan \theta_i|), R_{\text{out}}) - R_e$$

$$L_i^\beta \equiv \min(\max(R_e, |\frac{L_b}{2} \tan \theta_i|), R_{\text{in}}) - R_e$$

A Higgs-portal model

- Add a real SM-singlet scalar field to the SM Lagrangian, which mixes with the SM Higgs doublet field
- May connect the SM and the dark sectors
- Three parameters: m_{h_s} , $\sin^2 \theta$, $\langle \chi \rangle$
- Consider sub-GeV h_s: decay products are collimated
- Production:


$$\Gamma(h
ightarrow h_s h_s) \simeq rac{\sin^2 heta \left(m_h^2 - m_{h_s}^2
ight)^2}{32 \pi m_h \langle \chi
angle^2}$$

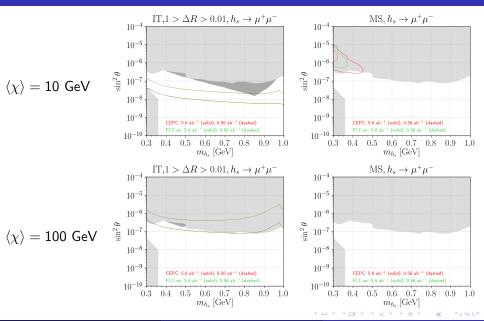
• $Br(h \rightarrow h_s h_s)$:

$$\mathsf{Br}(h o h_{s}h_{s}) = rac{\Gamma(h o h_{s}h_{s})}{\Gamma(h o h_{s}h_{s}) + \Gamma_{h}^{\mathsf{SM}}}$$

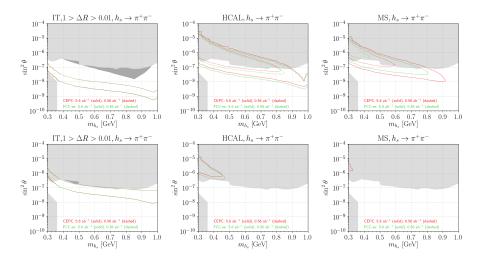
• Decay: $h_s \rightarrow \mu^+ \mu^-$, $\pi \pi$, 4π (with $m_{h_s} \in [0.3, 1.0]$ GeV)

h_s decay calculation

• Analytically calculate $\Gamma(h_s \to \ell^+ \ell^-)$


$$\Gamma(h_s \to \ell^+ \ell^-) = \sin^2 \theta \, \frac{m_\ell^2 m_{h_s}}{8\pi \langle \phi \rangle^2} \left(1 - \frac{4m_\ell^2}{m_{h_s}^2} \right)^{3/2}$$

• Numerically extract $\Gamma(h_s \to \pi \pi)$ and $\Gamma(h_s \to 4\pi)$ from [Winkler,'18]


m_{h_s} (GeV)	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
$Br(\mu^+\mu^-)$	20.6%	13.0%	10.3%	8.6%	7.1%	5.1%	2.5%	2.0%
$Br(\pi\pi)$	79.4%	87.0%	89.7%	91.3%	91.2%	93.0%	96.3%	96.8%
$Br(4\pi)$	0%	0%	0%	0.1%	1.7% 🖪	<u> </u>	1.2%	1.2% 🦿

Z.S. Wang

Results: dimuon channel

Results: dijet channel

æ

イロト イヨト イヨト

- Hierarchy problem in the SM
- Neutral Naturalness: predict uncolored top partners to protect the Higgs mass up to \sim 5-10 TeV
- The top partners can be either SM singlet or only charged in the EW sector, and charged under a *mirror* QCD sector *SU*(3)_B
- Examples: folded SUSY, (fraternal) twin Higgs, quirky little Higgs, hyperbolic Higgs, etc.
- In the folded SUSY, squarks are charged under $SU(3)_B$, but not $SU(3)_C$. $SU(2)_L \times U(1)_Y$ is shared between the SM particles and superpartners.
- In the mirror sector mirror glueballs are supposed to be the lightest states

Mirror glueball decay

$$\Gamma(0^{++} \to \xi\xi) = \left(\frac{1}{12\pi^2} \left[\frac{y^2}{M^2}\right] \frac{v}{m_h^2 - m_0^2}\right)^2 (4\pi\alpha_s^B \mathbf{F_{0^{++}}^S})^2 \Gamma_{h\to\xi\xi}^{SM}(m_0^2),$$

$$\bullet \ 4\pi\alpha_s^B \mathbf{F_{0^{++}}^S} \approx 2.3 \ m_0^3$$

$$\bullet \ \Gamma_{h\to\xi\xi}^{SM}(m_0^2) \text{ calculated} \text{ with HDECAY 6.52}$$

$$\frac{y^2}{1-2} \approx \begin{cases} \frac{1}{4v^2} \frac{m_t^2}{m_t^2}, \ \text{Folded SUSY} \\ -\frac{1}{12} \frac{m_t^2}{m_t^2}, \ \text{Fraternal Twin Higgs and Quirky Little Higgs} \end{cases}$$

 $M^2 \sim \begin{cases} -\frac{1}{2v^2} \frac{v}{m_T^2}, & \text{Fraternal Liwin Higgs and Quirky Little Higgs} \\ \frac{1}{2v^2} \frac{v}{v_H} \sin \theta, & \text{Hyperbolic Higgs} \end{cases}$

• Two parameters: m_0 and $m_{\tilde{t}}$ for folded SUSY

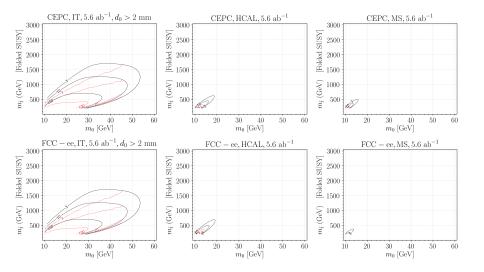

< 回 > < 三 > < 三 > -

Mirror glueball production

$$\mathsf{Br}(h\to 0^{++}0^{++})\approx \mathsf{Br}(h\to gg)_{\mathsf{SM}}\cdot \left(\frac{\alpha_s^B(m_h)}{\alpha_s^A(m_h)}2\,v^2\left[\frac{y^2}{M^2}\right]\right)^2\cdot \sqrt{1-\frac{4m_0^2}{M_h^2}}\cdot\kappa(m_0),$$

•
$$Br(h \rightarrow gg)_{SM} \approx 8.6\%$$

- α^B_s(m_h)/α^A_s(m_h) ~ O(1): ratio of the couplings of the hidden and SM QCD sectors
- $\kappa(m_0)$: the effect of the glueball hadronization mainly


Signatures and background

- \bullet Interested mass range: $\sim 10-60~\text{GeV}$
- Focus on $0^{++}
 ightarrow bar{b}$
- Consider all of IT, HCAL, and MS
- Major backgrounds:

•
$$e^-e^+ \rightarrow ZZ \rightarrow (\ell^+\ell^-, jj)(b\bar{b})$$

• $e^-e^+ \rightarrow Zh \rightarrow (\ell^+\ell^-, jj)(b\bar{b})$

- Make use of $Br(Z \rightarrow \ell^+ \ell^- / jj) \sim 0.8$: impose an invariant mass cut on the lepton or jet pair to identify the Z-boson
- Recoil-mass cut in order to remove the ZZ background: $M_{\text{recoil}}^2 = s - 2\sqrt{s}(E_{\ell^+} + E_{\ell^-}) + M_{\ell\ell}^2$; 120 GeV $< M_{\text{recoil}} < 150$ GeV
- Invariant-mass cut on $b\bar{b}$ pair: 10 GeV $< M_{b\bar{b}} <$ 80 GeV (no effect on the signal events)
- Require $d_0 > 2$ mm for both b-jets stemming from any secondary vertex in the IT
- Assume negligible SM background for the HCAL and MS

Results: $N_{\text{signal}} = 3, 10, 100$

æ

イロト イヨト イヨト イヨト

3. Outlook & Conclusions

- Truth-level study and Delphes 3 with displaced objects
- Other colliders such as the *LHeC* with 10⁵ Higgs bosons
- For reviews of LLPs, see: 1806.07396, 1810.12602, 1903.04497, ...

- The assumption of prompt decay might be wrong
- NP hidden in LLPs?
- LLP searches at future Higgs factories
 - Sub-GeV light scalar at a Higgs portal model
 - The lightest mirror glueball and neutral-naturalness models
- A lot more models of LLPs and a lot more search avenues available!

Thank You!

 Higgs generation: HiggsProcess module in Pythia8 Higgs decay exclusively to a pair of scalars New scalars further decay to specified states