

Exclusive $b \rightarrow s\mu\mu$ Processes

Toward Precision Probes of the Standard Model

Danny van Dyk

March 30th, 2021

Technische Universität München

Prelude

My intention is to enable those members of the audience that are so far unfamiliar with the theoretical aspects of $b \to s\ell\ell$ to develop an understanding of how these types of measurements ...

My intention is to enable those members of the audience that are so far unfamiliar with the theoretical aspects of $b \to s\ell\ell$ to develop an understanding of how these types of measurements ...

...lead to claims of tensions with SM at and above the 5σ level.

► w/o change of el. charge

▶ w/o change of el. charge

► w/o change of el. charge

lepton-flavour-universal gauge couplings!

► widely used tool of theoretical physics

- widely used tool of theoretical physics
- ▶ replaces dynamical degrees of freedom (here: t, W, Z) by coefficients C_i and static structures in local operators (here: Γ_i)

in the SM the we find the following D = 6 effective operators

$$\mathcal{L}_{SM}^{eff} = \mathcal{L}_{QCD} + \mathcal{L}_{QED} + \frac{4G_F}{\sqrt{2}} \left[\lambda_t \sum_i C_i O_i + \lambda_c \sum_i C_i^c O_i^c + \lambda_u \sum_i C_i^u O_i^u \right]$$

$$\mathcal{O}_7 = \frac{e}{16\pi^2} m_b (\overline{s}\sigma^{\mu\nu} P_R b) F_{\mu\nu} \qquad \mathcal{O}_8 = \frac{g_s}{16\pi^2} m_b (\overline{s}\sigma^{\mu\nu} P_R T^A b) G_{\mu\nu}^A$$

$$\mathcal{O}_9 = \frac{\alpha}{4\pi} (\overline{s}\gamma_\mu P_L b) (\overline{\ell}\gamma^\mu \ell) \qquad \mathcal{O}_{10} = \frac{\alpha}{4\pi} (\overline{s}\gamma_\mu P_L b) (\overline{\ell}\gamma^\mu \gamma_5 \ell)$$

$$\mathcal{O}_1^q = (\overline{q}\gamma_\mu P_L b) (\overline{s}\gamma^\mu P_L q) \qquad \mathcal{O}_2^q = (\overline{q}\gamma_\mu P_L T^a b) (\overline{s}\gamma^\mu P_L T^a q)$$

$$\mathcal{O}_i = (\overline{s}\gamma_\mu P_X b) \sum_q (\overline{q}\gamma^\mu q)$$

with $\lambda_q \equiv V_{qb}V_{qs}^*$

lacktriangle very complicated structure compared to the tree-level decays

SM contributions to $C_i(\mu_b)$ known to NNLL [Bobeth, Misiak, Urban '99; Misiak, Steinhauser '04, Gorbahn,

Haisch '04; Gorbahn, Haisch, Misiak '05; Czakon, Haisch, Misiak '06]

in the presence of BSM effects, complete basis of semileptonic operators by adding

$$\mathcal{L}_{\text{BSM}}^{\text{eff}} = \mathcal{L}_{\text{SM}}^{\text{eff}} + \frac{4G_F}{\sqrt{2}} \left[\lambda_t \sum_i \mathcal{C}_i \, \mathcal{O}_i \right]$$

with i running over 9', 10', S, S', P, P', T, T5:

$$\mathcal{O}_{9'} = \frac{\alpha}{4\pi} (\overline{s}\gamma_{\mu} P_{R} b) (\overline{\ell}\gamma^{\mu} \ell) \qquad \mathcal{O}_{10'} = \frac{\alpha}{4\pi} (\overline{s}\gamma_{\mu} P_{R} b) (\overline{\ell}\gamma^{\mu} \gamma_{5} \ell)$$

$$\mathcal{O}_{S} = \frac{\alpha}{4\pi} (\overline{s} P_{R} b) (\overline{\ell}\ell) \qquad \mathcal{O}_{S'} = \frac{\alpha}{4\pi} (\overline{s} P_{L} b) (\overline{\ell}\ell)$$

$$\mathcal{O}_{P} = \frac{\alpha}{4\pi} (\overline{s} P_{R} b) (\overline{\ell}\gamma_{5} \ell) \qquad \mathcal{O}_{P'} = \frac{\alpha}{4\pi} (\overline{s} P_{L} b) (\overline{\ell}\gamma_{5} \ell)$$

$$\mathcal{O}_{T} = \frac{\alpha}{4\pi} (\overline{s}\sigma^{\mu\nu} b) (\overline{\ell}\sigma_{\mu\nu} \ell) \qquad \mathcal{O}_{TS} = \frac{\alpha}{4\pi} (\overline{s}\sigma^{\mu\nu} P_{L} b) (\overline{\ell}\sigma_{\mu\nu}\gamma_{5} \ell) \qquad (1)$$

 $ightharpoonup C_i = 0$ in the SM for all of these operator!

- ▶ WET makes calculation in the SM possible in the first place
 - separates long-distance from short-distance physics
 - resums potentially large logarithms
- "divide and conquer"
- transparently allows to account model-independently for the effects of physics beyond the SM
 - ▶ interface to model builders ...
 - ...although transitioning to SM Effective Field Theory, which can help to related constraints amongst the various Weak Effective Theories (i.e., relate constraints in $b \to c \tau \nu$ with constraints in $b \to s \ell^+ \ell^-$)

Hadronic Matrix Elements &

SM Predictions

- ► the Lagrangian with its effective operators describes the decay of a free *b* quark
- however, the quarks are confined in hadrons
- ▶ to describe the decay we require further information about the b quark inside the initial state hadron H_b (and similarly about the s inside the final state hadron H_s)
- \blacktriangleright additionally, we need to account for one weak interaction + possibly multiple electromagnetic interactions, all of which are described by $\mathcal{L}_{\text{SM}}^{\text{eff}}$

- ► the Lagrangian with its effective operators describes the decay of a free *b* quark
- ▶ however, the quarks are confined in hadrons
- ▶ to describe the decay we require further information about the b quark inside the initial state hadron H_b (and similarly about the s inside the final state hadron H_s)
- ▶ additionally, we need to account for one weak interaction + possibly multiple electromagnetic interactions, all of which are described by \(\mathcal{L}_{SM}^{eff} \)

formally, we require matrix elements of all possible contributions of the Lagrangian \mathcal{T} : time ordering

$$\begin{split} \mathcal{A} \propto \left\langle H_{S} \right| \mathcal{T} \exp \left[i \int d\tau \mathcal{L}_{SM}^{eff}(\tau) \right] \left| H_{b} \right\rangle &= 0 + \left\langle H_{S} \right| \mathcal{L}_{SM}^{eff}(0) \left| H_{b} \right\rangle \\ &+ \left\langle H_{S} \right| \mathcal{T} \int d\tau \mathcal{L}_{SM}^{eff}(\tau) \mathcal{L}_{SM}^{eff}(0) \left| B \right\rangle + \dots \end{split}$$

- ▶ here, we are discussing $b \rightarrow s\ell\ell$ transitions only!
- lacktriangle examples for exclusive decays mediated by $b o s\ell\ell$ include

▶
$$\overline{B} \to \overline{K}^{(*)} \ell^+ \ell^-$$

pseudoscalar and vector final states

▶
$$\overline{B}_s \to \phi \ell^+ \ell^-$$

vector final state w/ s spectator

$$\blacktriangleright$$
 $\Lambda_b \to \Lambda \ell^+ \ell^-$

baryonic cousin to $\overline{B} \to \overline{K}\ell^+\ell^-$

baryonic cousin to $\overline{B} \to \overline{K}^* \ell^+ \ell^-$

Virtually identical amplitude anatomy for all these decays!

$$\mathcal{A}_{\lambda}^{\chi} = \mathcal{N}_{\lambda} \left\{ (\mathcal{C}_9 \mp \mathcal{C}_{10}) \mathcal{F}_{\lambda}(q^2) + \frac{2m_b M_B}{q^2} \left[\mathcal{C}_7 \mathcal{F}_{\lambda}^{T}(q^2) - 16\pi^2 \frac{M_B}{m_b} \mathcal{H}_{\lambda}(q^2) \right] \right\}$$

nomenclature

 λ : dilepton ang. mom., χ : lep. chirality

 \mathcal{F}_{λ} local form factors of dimension-three currents: $\bar{s}\gamma^{\mu}b$ & $\bar{s}\gamma^{\mu}\gamma_{5}b$ $\mathcal{F}_{\lambda}^{T}$ local dipole form factors of dimension-three current: $\bar{s}\sigma^{\mu\nu}b$ \mathcal{H}_{λ} nonlocal form factors of dimension-five nonlocal operators

$$\int d^4x \, e^{iq \cdot x} \, \mathcal{T} \{ J_{\text{em}}^{\mu}(x), \sum C_i O_i(0) \}$$

all three needed for consistent description to leading-order in $lpha_e$

- ▶ simplest observable: how frequently does a $\overline{B} \to \overline{K}^* \ell^+ \ell^-$ decay happen?
- ightharpoonup needs to account for each amplitude, with their various angular momentum states λ and lepton chiralities χ

$$\frac{d\mathcal{B}}{dq^2} \propto \tau_{\rm B} \left[\sum_{\chi=L,R} \sum_{\lambda} \left| \mathcal{A}_{\lambda}^{\chi} \right|^2 \right]$$

- very sensitive to the local form factors!
- ⇒ largest theory uncertainty of all observables

however ... measurements are systematically below predictions

Idea: test lepton-flavour universality through ratios of ${\cal B}$

$$\frac{d\mathcal{B}(H_b \to H_s \ell^+ \ell^-)}{dq^2} \bigg|_{SM} \propto \quad \#1 + \frac{m_\ell^2}{q^2} \quad \#2$$

- ▶ for $q^2 \ge 1 \, \text{GeV}^2$, the lepton-mass specific factor m_ℓ^2/q^2 is negligible and hence term #2 is irrelevant
- ▶ term #1 then cancels in every q^2 point
- \Rightarrow $R_{H_s} \equiv \mathcal{B}^{(\mu)}/\mathcal{B}^{(e)} \simeq 1$ for every H_s and in that q^2 interval
 - \blacktriangleright deviation from 1 is a brilliant SM null test, th. uncertainties \sim 1%
 - reasonable SM uncertainty estimates must include electromagnetic effects!
 - ▶ works even for decays such as $\overline{B} \to \overline{K}\pi\pi\ell^+\ell^-$ or $\Lambda_b \to pK^-\ell^+\ell^-$, for which we have no reliable theory predictions at all!

again, measurements are systematically below predictions

Three independent decay angles in $\overline{B} \to \overline{K}^* \ell^+ \ell^-$ (similar for other decays!)

- $heta_\ell$ helicity/polar angle of the lepton pair
- θ_K helicity/polar angle of the $\overline{K}\pi$ pair
- ϕ azimuthal angle between the two decay planes

[LHCb-PAPER-2013-019]

Three independent decay angles in $\overline{B} \to \overline{K}^* \ell^+ \ell^-$ (similar for other decays!)

- $heta_\ell$ helicity/polar angle of the lepton pair
- θ_K helicity/polar angle of the $\overline{K}\pi$ pair
- ϕ azimuthal angle between the two decay planes

angular distribution

$$\frac{1}{\mathcal{B}}\frac{d^4\mathcal{B}}{dq^2\,d\cos\theta_\ell\,d\cos\theta_K\,d\phi} = \sum_i S_i(q^2) f_i(\cos\theta_\ell,\cos\theta_K,\phi)$$

gives rise to 12 angular observables $S_i(q^2)!$

- ightharpoonup numerator of each S_i comprised of the same amplitudes as \mathcal{B}
- ▶ but: non-diagonal terms like $S_{6s} \propto \text{Re}\,\mathcal{A}_{\perp}\mathcal{A}_{\parallel}^*$ provide complementary access to Wilson coefficients compared to \mathcal{B}
- ▶ normalization to B ensures (partial) cancellation of theory uncertainties

Some of the angular observables (or linear combinations thereof) are better known under other names

forward-backward asymmetry: how often does the negative charged lepton fly into the opposite direction of the kaon vs in direction of the kaon?

$$A_{FB} \propto S_{6s} + \frac{1}{2}S_{6c}$$

Parity violating observable, sensitive to interference of vector and axialvector currents!

 longitudinal polarisation: how often is the kaon longitudinally polarized out of all decays more complicated expression, dominantly sensitive to local form factors But what about P_5' ?

[LHCb]

But what about P_5' ?

idea: construct basis of angular observables in which the impact of local form factors (\mathcal{F}_{λ}) is reduced.

[Descotes-Genon,Matias,Ramon,Virto '1]

- ▶ clever use of symmetries among the decay amplitudes
- affected fits when theory and experimental correlations were unknown or only poorly known
- still useful to illustrate tensions between SM predctions and measurements

If experimental and theoretical correlations are accounted for, the choice of basis makes no difference!

	$B \to K$	$B o K^*$	$B_{s} ightarrow \phi$	$\Lambda_b o \Lambda$
# of FFs	3	7	7	10
$q^2 \lesssim 10 \text{ GeV}^2$ $q^2 \gtrsim 15 \text{ GeV}^2$		LCSR (×2, *) LQCD (×1, *)		

LQCD Lattice QCD simulations, systematically improvable

LCSR Light-Cone Sum Rules calculations, with hard-to-quantify systematic uncertainties, with either

- ightharpoonup rule of thumb: $\sim 10\%$ uncertainty, but correlations are usually known
- ⇒ largest impact in branching fraction, but reduced uncertainties in ratios
- (*) assuming that the K^* (892), which is a $K\pi$ resonance, can be replaced with a stable bound state
- (†) large uncertainties due to extrapolation

	B o K	B → K*	$B_{s} ightarrow \phi$	$\Lambda_b o \Lambda$
# of FFs	3	7	7	10
$q^2 \lesssim 10 \text{ GeV}^2$ $q^2 \gtrsim 15 \text{ GeV}^2$		LCSR (×2, *) LQCD (×1, *)		

- ▶ different excl. decay modes provide complementary systematic effects
- experimental data also provides information on the local form factors
- \Rightarrow global analyses: nontrivial crosschecks of the computation methods
 - ! small q^2 , which drives anomalies, dominated by LCSRs, which are least reliable method
- \checkmark no conceptual problem for LQCD to reach small q^2
- ⇒ good prospects for improvement

$$\mathcal{H} \sim \langle H_s | \int d^4 \mathbf{x} \, e^{iq \cdot \mathbf{x}} \, \mathcal{T} \{ J_{em}^{\mu}(\mathbf{x}), \sum C_i O_i(0) \} | H_b \rangle$$

■ numerically dominant effect from sbcc operators O₁^c and O₂^c, the so-called "charm loop effect"

	$B \to K$	$B \to K^*$	$B_{s} ightarrow \phi$	$\Lambda_b o \Lambda$
# of FFs	1	3	3	4
$q^2 \lesssim 1 \text{GeV}^2$ $q^2 \gtrsim 15 \text{GeV}^2$		LCOPE OPE		LCOPE (*) OPE

OPE reduction to local operators $x^{\mu} = 0$

LCOPE reduction to operators on the light-cone $x^2 \simeq 0$

(*) next-to-leading power matrix elements cannot presently be computed

both cases: matrix elements of the leading operators are the local form factors

Phenomenology

- \blacktriangleright use universality of C_i to overconstrain their values from data
- ▶ use data on $B \to K^{(*)}\ell^+\ell^-$, $B \to K^*\gamma$, $B_s \to \phi\ell^+\ell^-$, ...
 - available from CLEO
 - ▶ available from *B*-factory experiments: BaBar, Belle
 - ▶ available from Tevatron experiments: CDF, D0
 - available from LHC experiments: ATLAS, CMS, LHCb
 - ► LHCb has largest impact in fits due to number of observations and their precision
- \blacktriangleright make assumptions on relevant C_i
 - ▶ 10 per lepton flavour up to mass dimension 6
 - ▶ 6 of these can be removed due to smallness observed in data

[Beaujean, Bobeth, Jahn 2015] [Altmannshofer, Niehoff, Straub 2017]

- ▶ fit 8 C_i and O (50) nuisance parameters (form factors) to theory constraints and \sim 250 experimental measurements
- ▶ hoping to see Belle 2 and CMS highlighted in the near future!

- ▶ based on M. Alguero's update talk at Moriond '21 QCD
- ▶ measurements do not agree well with SM predictions p values \sim 1% for all obs. and for the LFU subset!
- ▶ BSM contributions in C_9 -only scenario increase p value to $\sim 40\%$
- ▶ Pulls in C_9 -only scenario have reached 7σ
- ▶ Prefered scenario (7.3σ) :
 - ▶ lepton-flavour universal shift to *e* and μ : $C_9^U = -0.92$
 - μ -specific additional shift: $C_9^V = -C_{10}^V = -0.30$

- ▶ Are all angular momentum states under control? Does C_9 extracted from $\lambda = \bot$ coincide with C_9 extracted from $\lambda = \parallel$? (in the past) yes! new analyses need to update checks!
- ► The Wilson coefficients are q^2 agnostic. Do we see a q^2 dependence in the shift to C_9 ? no!
- ► The Wilson coefficient are process agnostic. Do we see deviations in the best-fit point across different processes? yes! 2016 – 2019: $\Lambda_b \to \Lambda \mu^+ \mu^-$ showed $C_9^{\rm BSM} > 0$ no! since 2019 LHCb erratum and new data

Excellent agreement in all cross checks!

▶ all present fitting groups rely on following approach:

$$\mathcal{H}_{\lambda}(q^2) \equiv c_3(q^2) \times \mathcal{F}_{\lambda}(q^2) + \tilde{\mathcal{V}}_{\lambda}(q^2)$$

- use results for local OPE of the nonlocal form factors to leading power (c_3)
- parametrize effect of next-to-leading power operator using $\tilde{\mathcal{V}}_{\lambda}$
- ▶ at $q^2 > 1 \,\text{GeV}^2$, no guarantee that this approach works
- need better strategy for precision analyses of present and upcoming data

Developments

- if $|q^2| = \mathcal{O}(m_b^2)$, expand T-product in local operators
- ▶ leading operators have mass dimension three, with universal matching coefficient $c_3(q^2)$

$$\Rightarrow \mathcal{H}_{\lambda} = c_3(q^2)\mathcal{F}_{\lambda}(q^2) + \dots$$

! usually applied in integrated form to $q^2 \le 4M_D^2$

- if $q^2 4m_c^2 \ll \Lambda_{\rm had} m_b$, expand T-product in light-cone operators
- ▶ leading operators have mass dimension three, with universal matching coefficient $c_3(q^2)$

$$\Rightarrow \mathcal{H}_{\lambda} = c_3(q^2)\mathcal{F}_{\lambda}(q^2) + \dots$$

- ▶ for $q^2 = M_{J/\psi}^2$ and $q^2 = M_{\psi(2S)}^2$, spectrum dominated by hadronic decays
- residues of nonlocal form factors model-independently relate to hadronic decay amplitudes

- ► compute \mathcal{H} at spacelike q^2
- extrapolate \mathcal{H} to timelike $q^2 \leq 4M_D^2$
- ▶ include information from hadronic decays $\overline{B} \to \overline{K}^{(*)} \psi_n$
- data-driven approach, ideally carried out with the experimental colleagues

$$4m_c^2 - q^2 \gg \Lambda_{\text{hadr.}}^2$$

- ▶ expansion in operators at light-like distances $x^2 \simeq 0$ [Khodjamirian, Mannel, Pivovarov, Wang 2010]
- ▶ employing light-cone expansion of

charm propagator [Balitsky, Braun 1989]

$$\xrightarrow{q^2 \ll 4m_{\mathsf{C}}^2} \underbrace{\left(\frac{C_1}{3} + C_2\right) g(m_{\mathsf{C}}^2, q^2)}_{\mathsf{coeff} \ \#1} \left[\overline{s} \, \Gamma \, b \right] + \cdots$$

$$+ \left(\mathsf{coeff} \ \#2 \right) \times \left[\overline{s}_L \gamma^{\alpha} (in_+ \cdot \mathcal{D})^n \tilde{G}_{\beta \gamma} b_L \right]$$

$$0 \le u \le 1$$

$$4m_c^2 - q^2 \gg \Lambda_{hadr.}^2$$

- expansion in operators at light-like distances $x^2 \simeq 0$ [Khodjamirian, Mannel, Pivovarov, Wang 2010]
- ► employing light-cone expansion of charm propagator [Balitsky, Braun 1989]

$$0 \le u \le 1$$

$$\Rightarrow \mathcal{H}_{\lambda} = \mathsf{coeff} \, #1 \times \mathcal{F}_{\lambda} + \mathcal{H}_{\lambda}^{\mathsf{spect.}} \\ + \mathsf{coeff} \, #2 \times \tilde{\mathcal{V}}$$

▶ leading part identical to QCD Fact. results

[Beneke Feldmann Seidel 2001&2004]

- \blacktriangleright subleading matrix element $\tilde{\mathcal{V}}$ can be inferred from B-LCSRs [Khodiamirian, Mannel, Pivovarov, Wang 2010]
- ▶ recalculating this step we obtain full agreement; cast result in more convenient form

[Gubernari.DvD.Virto '20]

at subleading power in the OPE, need matrix elements of a non-local operator

$$\tilde{\mathcal{V}} \sim \langle M | \, \bar{s}(0) \gamma^{\rho} P_{L} G^{\alpha\beta}(-u n^{\mu}) b(0) \, | B \rangle$$

for $B \to K^{(*)}$ and $B_s \to \phi$ transitions

▶ matrix element has been calculated in light-cone sum rules

[Khodjamirian et al, 1006.4945]

- physical picture provides that the soft gluon field originates from the B meson
 - analytical results independent of two-particle bq
 Fock state inside
 the B
 - expressions start with three-particle bqG Fock state, and their light-cone distribution amplitudes (LCDAs)

$$\langle 0 | \overline{q}(x) G^{\mu\nu}(ux) \Gamma h_{\nu}^{b}(0) | \overline{B}(\nu M_B) \rangle$$

 original results missing out on four out of eight three-particle LCDAs

- we recalculate the soft-gluon contributions to the full set of $B \to V$ and $B \to P$ non-local form factors using light-cone sum rules
 - analytic results for restricted set of LCDAs in full agreement with KMPW2010

 [Khodjamirian, Mannel, Pivovarov, Wang 2010]
 - result of restricted set fails to reproduce duality thresholds obtained from local form actor sum rules [Gubernari, Kokulu, DVD '18
 - using the full set of LCDAs, our results reproduce the duality thresholds!
 - our numerical results differ significantly from KMPW2010, but are well understood!

Compute Soft gluon matrix elements

Transition	$\tilde{\mathcal{V}}(q^2=1\mathrm{GeV}^2)$	GvDV2020	KMPW2010
$B \to K$	$ ilde{\mathcal{A}}$	$(+4.9 \pm 2.8) \cdot 10^{-7}$	$(-1.3^{+1.0}_{-0.7})\cdot 10^{-4}$
$B o K^*$	$\tilde{\mathcal{V}}_1$	$(-4.4 \pm 3.6) \cdot 10^{-7} \text{GeV}$	$(-1.5^{+1.5}_{-2.5}) \cdot 10^{-4} \mathrm{GeV}$
	$ ilde{\mathcal{V}}_2$	$(+3.3 \pm 2.0) \cdot 10^{-7} \text{GeV}$	$(+7.3^{+14}_{-7.9}) \cdot 10^{-5} \mathrm{GeV}$
	$ ilde{\mathcal{V}}_3$	$(+1.1 \pm 1.0) \cdot 10^{-6} \text{ GeV}$	$(+2.4^{+5.6}_{-2.7}) \cdot 10^{-4} \text{GeV}$
$B_s o \phi$	$ ilde{\mathcal{V}}_1$	$(-4.4 \pm 5.6) \cdot 10^{-7} \text{GeV}$	_
	$ ilde{\mathcal{V}}_2$	$(+4.3 \pm 3.1) \cdot 10^{-7} \text{GeV}$	_
	$ ilde{\mathcal{V}}_3$	$(+1.7 \pm 2.0) \cdot 10^{-6} \text{GeV}$	_

reduction by a factor of ~ 200

- ▶ new structures in three-particle LCDAs account for factor 10
- updated inputs that enter the sum rules (mostly) linearly account for further factor 10
- ▶ similar relative uncertainties, but absolute uncertainties reduced by O (100)

▶ Taylor expand \mathcal{H}_{λ} in q^2/M_B^2 around 0

[Ciuichini et al. '15]

- + simple to use in a fit
- incomaptible with analyticity properties, does not reproduce resonances
- expansion coefficients unbounded!

▶ Taylor expand \mathcal{H}_{λ} in q^2/M_B^2 around 0

[Ciuichini et al. '15]

- + simple to use in a fit
- incomaptible with analyticity properties, does not reproduce resonances
- expansion coefficients unbounded!
- use information from hadronic intermediate states in a dispersion relation [Khodjamirian et al. '10]

$$\mathcal{H}_{\lambda}(q^2) - \mathcal{H}_{\lambda}(q^2) = \int ds \frac{\operatorname{Im} \mathcal{H}_{\lambda}(s)}{(s-s_0)(s-q^2)} + \dots$$

- + reproduces resonances
- hadronic information above the threshold must be modelled
- complicated to use in a fit, relies on theory input in single point s₀

► Taylor expand \mathcal{H}_{λ} in q^2/M_B^2 around 0

[Ciuichini et al. '15]

- + simple to use in a fit
- incomaptible with analyticity properties, does not reproduce resonances
- expansion coefficients unbounded!
- use information from hadronic intermediate states in a dispersion relation
 [Khodiamirian et al. '10]

$$\mathcal{H}_{\lambda}(q^2) - \mathcal{H}_{\lambda}(q^2) = \int ds \frac{\operatorname{Im} \mathcal{H}_{\lambda}(s)}{(s-s_0)(s-q^2)} + \dots$$

- + reproduces resonances
- hadronic information above the threshold must be modelled
- complicated to use in a fit, relies on theory input in single point s_0
- expand the matrix elements in variable $z(q^2)$ that develops branch cut at $q^2 = 4M_D^2$ [Bobeth/Chrzaszcz/DvD/Virto '17
 - + resonances can be included through explicit poles (Blaschke fact.)
 - + easy to use in a fit
 - + compatible with analyticitiy properties
 - expansion coefficients unbounded!

matrix elements ${\cal H}$ arise from non-local operator

$$O^{\mu}(Q; x) \sim \int e^{iQ \cdot y} T\{J_{\text{em}}^{\mu}(x+y), [C_1O_1 + C_2O_2](x)\}$$

construct four-point operator to derive a dispersive bound

▶ define matrix element of "square" operator

$$\left[\frac{Q^{\mu}Q^{\nu}}{Q^2} - g^{\mu\nu}\right] \Pi(Q^2) \equiv \int e^{iQ\cdot x} \langle 0| T\{O^{\mu}(Q;x)O^{\dagger,\nu}(Q;0)\} |0\rangle$$

- as hermiatian operator, vacuum eigenvalues are positive definite!
- ▶ for $Q^2 < 0$ we find that $\Pi(Q^2)$ has two types of discontinuities
 - ▶ from intermediate unflavoured states (cc̄, cc̄cc̄, ...)
 - ► from intermediate bs-flavoured states (bs, bsq, bscc, ...)

► from intermediate unflavoured states ($c\overline{c}$, $c\overline{c}c\overline{c}$, ...)

- ► from intermediate unflavoured states (cc̄, cc̄cc̄, ...)
- ► from intermediate <u>bs</u>-flavoured states (<u>bs</u>, <u>bsg</u>, <u>bscc</u>, ...)

dispersive representation of the $b\overline{s}$ contribution to derivative of Π

$$\chi(Q^2) \equiv \frac{1}{2!} \left[\frac{d}{dQ^2} \right]^2 \frac{1}{2i\pi} \int_{(m_b + m_s)^2}^{\infty} ds \, \frac{\mathsf{Disc}_{b\overline{s}} \, \mathsf{\Pi}(\mathsf{s})}{\mathsf{s} - Q^2}$$

positive definite for $Q^2 < 0$

- ► Disc_{bs} Π can be computed in the local OPE \rightarrow yields $\chi^{OPE}(Q^2)$
- ► OPE result indicates that two derivatives are needed for convergence of dispersive integral
- ▶ Disc_{bs} Π can be expressed in terms of the matrix elements \mathcal{H}_{λ} \rightarrow yields $\chi^{\mathrm{had}}(Q^2)$
- \blacktriangleright global quark hadron duality suggests that both $\chi^{\rm had}$ and $\chi^{\rm OPE}$ are equal
 - → yields a dispersive bound

the hadronic represenation reads schematically:

$$\chi^{\mathsf{OPE}}(Q^2) \ge \frac{1}{2!} \left[\frac{d}{dQ^2} \right]^2 \int_{(m_b + m_s)^2}^{\infty} ds \sum_{\lambda} \frac{\omega_{\lambda}(s) \left| \mathcal{H}_{\lambda}(s) \right|^2}{s - Q^2}$$

aim: diagonalize this expression

Ansatz:

$$\hat{\mathcal{H}}_{\lambda}(q^2) \equiv P(q^2) \times \phi_{\lambda}(q^2) \times \mathcal{H}_{\lambda}(q^2) \equiv \sum_{n} a_{\lambda,n} f_n(q^2)$$

- ▶ Blaschke factors *P* remove narrow charmonia poles
- ightharpoonup outer functions ϕ_{λ} account for weight function ω_{λ} and Cauchy integration kernel
- ightharpoonup orthonormal functions f_n diagonalizes remainder of the expression

normalisation to χ^{OPE} leads to a diagonal bound

$$1 \ge \sum_{\lambda} \sum_{n} |a_{\lambda,n}|^2$$

simple exercise: bound on the shift to C_9 from nonlocal form factors, assuming only two data points at negative q^2

$$\frac{1}{11} > \sum_n |a_n|^2$$

- ▶ drawback: basis of orthonormal polynomials $f_n(z)$ behaves pathologically for Re z < 0
 - ▶ $|f_n(-1)| \sim C^n$ with $C \ge 1$
 - can be partially alleviated by chosing free parameter t₀ in definition of z
- we do not currently claim control of the truncation error, rather, only a handle
- actively looking into alternative formulations of the dispersive bound that evade the pathological behaviour

Summary

- lacktriangleright anomalies make exclusive $b o s\ell\ell$ decays an exciting research topic
- tensions mandate hightened scrutiny of theory assumptions and inputs
 - ▶ nonlocal form factors contribute the single-largest systematic uncertainty in exclusive $b \to s\ell\ell$ decays
 - ► I think there is a clear road toward a reliable description of these objects, but much work still needs to be done
- ▶ key is a combined theory + data driven approach
 - new developments show path in this direction
- looking forward to both upcoming phenomenological applications and upcoming experimental results