

Fabrication and performance of LG cavities

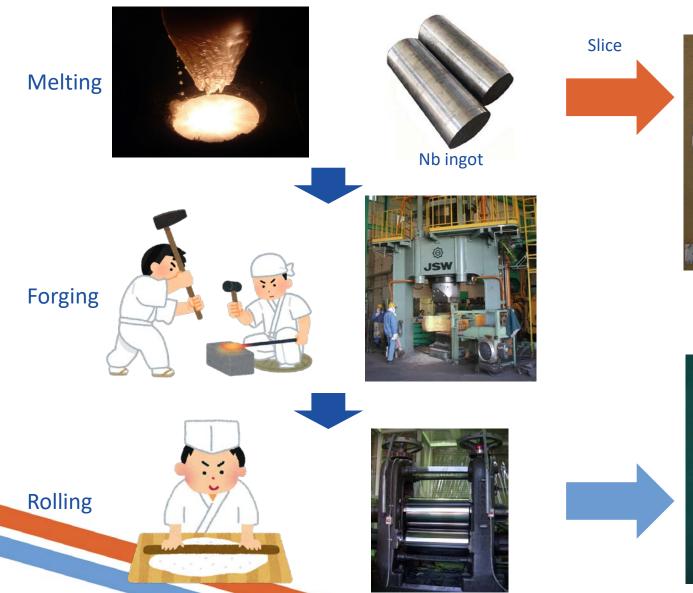
IHEP-KEK meeting 2020/12/9

Takeshi DOHMAE

Today's topic

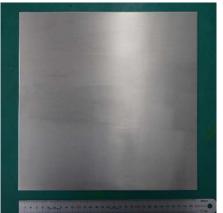
Current activities at KEK/CFF

Cavity Fabrication Facility (CFF) at KEK is currently;


- Working for cost reduction on cavity fabrication
 - ≻Reduce the cost for material: Large grain (LG) Nb

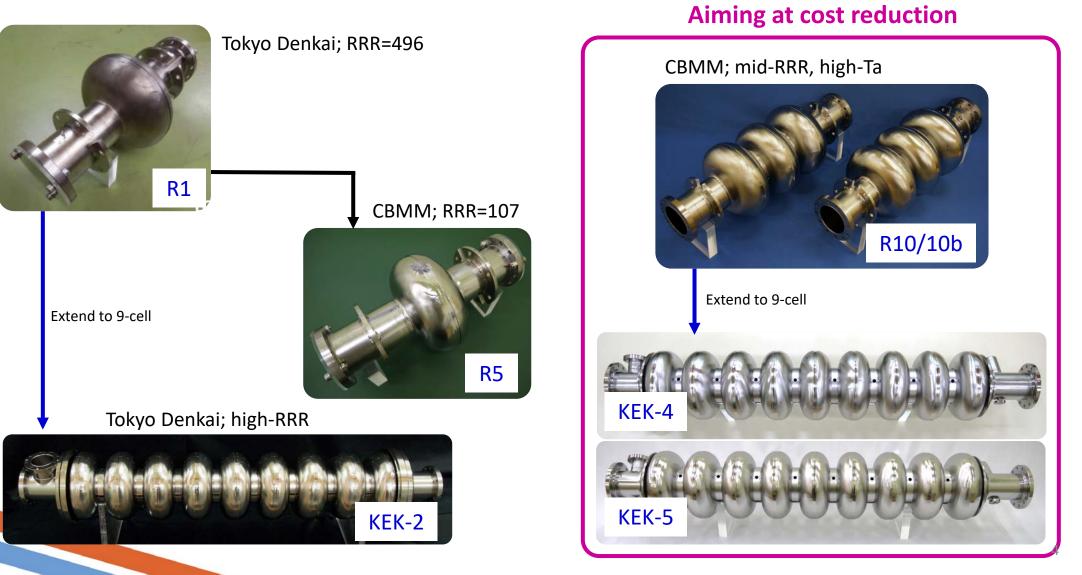
➢ Reduce the cost for fabrication

- Working for high pressure gas safety act (He-tank of cavity) Step1. Pre-application for evaluation criterion Step2. Application for equipment test
- Collaborating with other lab and company
 - >Inner welding of cavity (with CERN and TECHMETA)
 - Challenge of new technologies


LG niobium production

LG Nb

Fine Grain Nb


Forging and rolling steps can be skipped for LG Nb production.

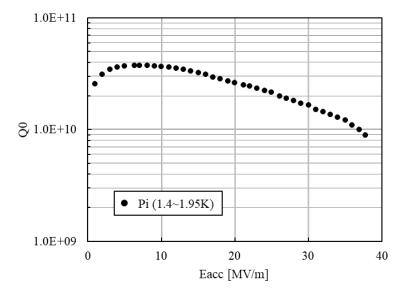
Large cost reduction can be expected using LG Nb.

LG Nb cavities fabricated in KEK

Performance test

- Surface treatment (before test)
- 1. EP1 (100μm)
- 2. Annealing (750 (800) deg \times 3hrs)
- 3. Tuning
- 4. EP2 (20~30μm)
- 5. Assembly
- 6. Baking (120deg \times 48hrs)
- Measurement environment
- ✓ Vertical cryostat filled with liquid He
- ✓ Remaining magnetic field : 5~10mG
- ✓ No magnetic cancelation. (except R10)

Different RRR LG Nb


1.0E+11 1.0E+11 "Fabrication and evaluation of quench superconducting single-cell ₿ 1.0E+10 cavities manufactured using ₿ 1.0E+10 different materials and Measured again • Pi (2K, VT1) methods", Hirotaka Shimizu et at Jlab ▲ Pi (2K, VT2) • Pi (2K, VT1) al., 2017 P. Dhakal ■ Pi (2K, VT3) ▲ Pi (2K, VT2) ◆ Pi (2K, VT4) □ Pi (2K, VT3) **TUP012** 1.0E+09 1.0E+09 20 30 10 20 30 40 50 10 40 0 0 Eacc [MV/m] Eacc [MV/m]

Achieved to high gradient with hi-RRR LG Nb, but not with lo-RRR ⁶

9-cell cavity made by high-RRR LG Nb

$\frac{\text{Rs vs 1/T}}{\frac{10^{-6}}{2}} \xrightarrow{\pi-\text{mode}} + \frac{10^{-7}}{10^{-7}} \xrightarrow{FG cavity} + \frac{10^{-8}}{10^{-8}} \xrightarrow{\pi-\text{mode}} + \frac{1$

0.4

- Achieved high gradient
 →more than 40MV/m at most of cells
- Residual resistance is lower than FG →higher Q-value is expected
 - \rightarrow further study necessary with good magnetic environment

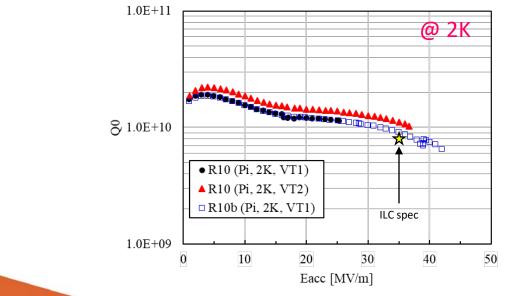
0.5 0.6

0.7 0.8 1/T[1/K]

Maximum gradients at each cell

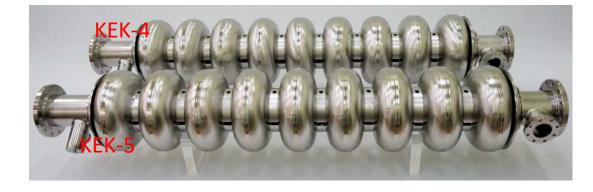
Cell#	1	2	3	4	5	6	7	8	9
E _{acc}	>45	40.4	39.6	>44.7	>42.7	>44.7	>39.6	>40.4	>45

"Investigation of in-house superconducting radio-frequency 9-cell cavity made of large grain niobium at KEK", Takeshi Dohmae et al., 2017 7


Current activities on LG Nb

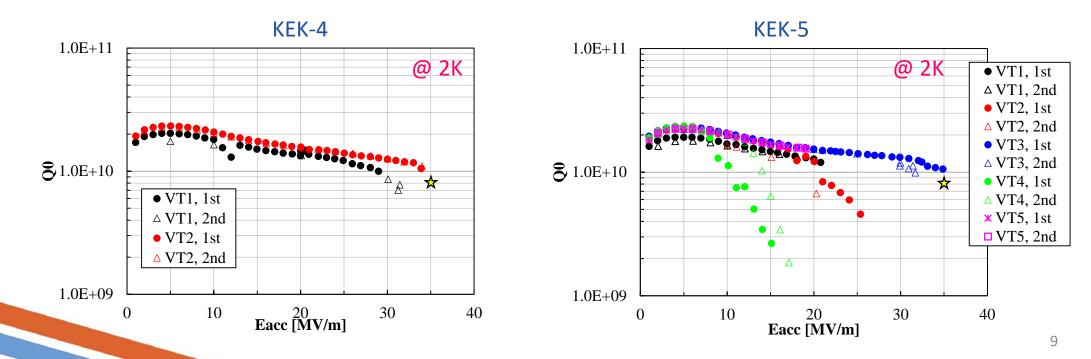
Two 3-cell cavities were made using CBMM LG Nb.

- ✓ RRR($\rho(300K)/\rho(Tc)$) = 242-298
- ✓ High Ta contained (1034ppm)



Two 3-cell cavities satisfied ILC spec.

Two 9-cell cavities were fabricated using same material.



9-cell cavity made by LG Nb

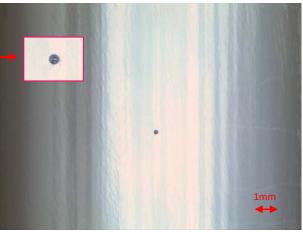
Two 9-cell cavities were fabricated using same LG Nb as previous page (CBMM mid-RRR, hi-Ta contained).

Two of them have not achieved ILC spec.

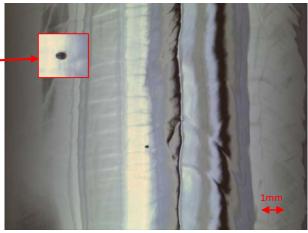
Summary of KEK-4/5

KEK-4

VT1


VT2

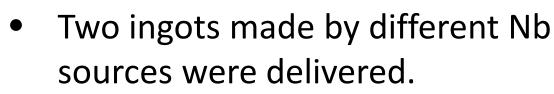
Defect found near the quench position of VT1 (KEK-4)


E _{acc}	Reason	
31.5 MV/m	Quench by the defect	 • •
34 MV/m	Quench (no defects were found)	

KEK-5	E _{acc}	Reason
VT1	20 MV/m	Quench by the defect
VT2	25 MV/m	Power limitation due to heavy x-ray radiation
VT3	32 MV/m	Quench by the defect
VT4	17 MV/m	Power limitation due to heavy x-ray radiation
VT5	19MV/m	Quench by the defect

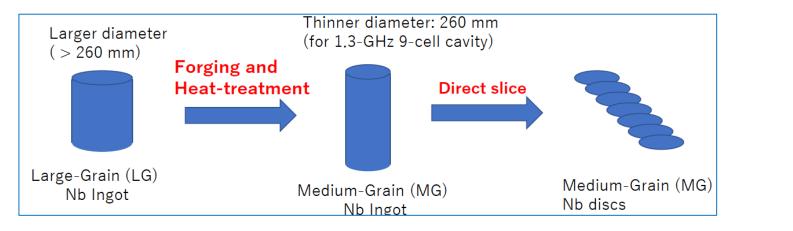
• If any defects are found near the quench position, they are removed by local grinding. Then, measurement is done after 20-30µm EP.

Defect found near the quench position of VT5 (KEK-5)



New LG Nb is ready from ULVAC

ULVAC enabled to produce ϕ 300 ingot.



- Sliced by Japanese company.
- Four 3-cell cavities made by each ingot is now under fabrication.

A new Fabrication Approach for <u>Nb Disc directly sliced from Forged Ingot</u>

Uniformly pressed at KEK

- Aiming to realize clean surface and medium grain mechanical characteristics, in cooperation with ATI, and
- SRF cavity fabrication and RF test to be examined at KEK

See more: a report at AWLC-2020, by T. Saeki, https://agenda.linearcollider.org/event/8622/timetable/#20201021

<u>Summary</u>

KEK/CFF has been investigating 1.3GHz elliptical cavity made of LG Nb for cost reduction.

- Several single/3/9-cell cavities were fabricated by several kinds of LG Nb.
 - \checkmark Single-cell and 9-cell cavity with high RRR LG Nb
 - \rightarrow Achieved > 35MV/m
 - \checkmark 3-cell and 9-cell cavities with mid RRR & high Ta contained LG Nb

 \rightarrow Achieved > 35 MV/m with 3-cell but not with 9-cell

- New LG Nb from ULVAC is now ready.
- Challenging new material.