

2021 Joint workshop of FKPPL and TYL/FJPPL

New Project of FJPPL (D_RD_23):

Development of precision timing silicon detector (LGAD) for future collider experiments

Koji Nakamura (KEK)

Koji Nakamura^{*1} (KEK) Kazuhiko Hara, Tatsuki Ueda, Sayuka Kita (Tsukuba) Yahya Khwaira, Maurice Cohen-Solal,

Abdenour Lounis, Reisaburo Tanaka*2(IJC/IN2P3)

*1 Koji.Nakamura@cern.ch

10-13 May, 2021 **FJPPL 2021**

Next generation of Collider experiment

- Need "Higher Luminosity" and/or "Higher Energy"
 - High Luminosity LHC (HL-LHC)
 - 20 times more data (~3000-4000fb⁻¹) at **14TeV**
 - Plan : Start at 2027
 - High Energy LHC (HE-LHC)
 - Use Super Conducting Magnet with Higher Magnetic field(16T)
 - 28TeV collider in the same tunnel as LHC.
 - Future Circular Collider (FCC-hh)
 - Use Super Conducting Magnet with Higher Magnetic field(16T)
 - 100TeV collider with 100km tunnel at CERN.
 - International Linear Collider (ILC)
 - 250GeV e+ e- collider in Japan

Inner Tracking system

Very high density tracks

140 pileup @ HL-LHC 1500 pileup @ FCC-hh

Only way to solve this so far...

iner pixel pitch

Current detector (ATLAS IBL)

New detector (Pixel @HL-LHC) Ф♠

Future Semi-conductor Tracking Detectors

- Further finer pitch pixel detector → Limited by front end Electronics (min: 50x50um²)
 - In addition to spatial resolution, Timing resolution helps!
 - → New generation of Tracking detector should have timing information for all hits!
- Tentative Requirement
 - 30ps timing resolution
 - ~o(10)um spatial resolution (Pixel type).
 - (hadron collider) $\sim o(10^{16})n_{eq}/cm^2$ radiation tolerance

Detector Hit

Solve pileup hits in an event

Particle identification

K+ π+ separation

Mass spectrum for new particle

β measurement to obtain mass

e.g. Mass measurement for Long lived chargeno

10-13 May, 2021 FJPPL 2021 3

Low gain Avalanche Diode (LGAD)

- Low gain Avalanche Diode (LGAD)
 - General n^+ -in-p type sensor with p^+ gain layer under n^+ implant to make higher Electric Field \rightarrow Good timing resolution.
 - 30ps timing resolution achieved already.
 - Next development
 - Finer electrode separation for spatial resolution
 - Radiation tolerance

10-13 May, 2021 FJPPL 2021

Detector with both spatial and timing resolution

- First prototype with 80um pitch strip (DC-LGAD) → Only 20% of active area has gain
- Common gain layer with AC-coupled readout (AC-LGAD) → Uniform gain expected!
 - Cross talk expected in the n^+ implant \rightarrow Increase resistivity of n^+ implant

First AC-LGAD by KEK/HPK

HV: 170V

Pad type sensor (4x 500umx500um) Pixel type sensor (14x14 50umx50um)

Pixel pitch

50µm

DC ring

Poly-si
resistor

Strip type sensor (16x 80um pitch)

Active Thickness: 50um

GNDed DC ring via Poly-si

→ To remove charge in n+

Varied Al size (AC coupling capacitance)

Pixel: 42/38/34/30 um width/length

Strip: 45/40/35/30 um width

First time : AC-LGAD signal observed with small crosstalk

IV performance after irradiation

- Irradiated sensors at CYRIC (Tohoku university) with 70MeV Proton.
- Operation/Gain voltage get higher by irradiation (almost linearly)
 - Current sensor does not work after 1x10¹⁵n_{eq}/cm² fluence or more.

Signal Size

Fluence	Signal MPV
Non-irrad	35±2 mV
1x10 ¹⁴ n _{eq} /cm ²	39±1 mV
5x10 ¹⁴ n _{eq} /cm ²	30±2 mV

5x10¹⁴n_{eq}/cm² may have slight decrease of signal (But keep at least ~75%)

Readout ASIC development

MEGA Microelectronics

- HL-LHC upgrade: ATLAS High Granular Timing Detector (HGTD)
 - Insert 2 disks of HGTD detector between Inner Tracker and Calorimeter.

- ALTIROC ASIC
 - Targetting a 25ps time resolution

Plan: Application this technology to AC-LGAD readout ASIC

ALTIROC1 ASIC

Summary

- Silicon tracking detector with spartial and timing resolution is promising to improve physics performance for future collider experiment.
 - AC-LGAD developed by HPK/KEK should be a strong candidate

Need improvement especially for radiation tolerance

- This technology will help to readout AC-LGAD signal.
- → Synergy of these activities will make extremely effective R&D
- Existing collaboration with following Facility and expertise
 - Secondry Ion Mass Spectroscopy (SIMS)
 - CYRIC proton irradiation facility

Mainly we ask funding for exchange people between FR-JP Share experience/common development

Secondary Ion Mass Spectrometry and Simulation

- SIMS measurement
 - Analytical technique to characterize the impurities near surface(<30um) by ionized secondary particles.
 - Good detection sensitivity for B, P, Al, As, Ni, O, Si etc down to 10¹³ atoms/cm³ with 1-5nm depth resolution.
- Synopsys TCAD simulation
 - Process simulation:
 - Simulate implantation and resulting concentrations.
 - Can compare to SIMS result.
 - Device Simulation :
 - Simulate Electric field to understand the performance of silicon device.
 - Possible to perform simulation for charge correction of MIP signal.

CYRIC: Irradiation Facility in Japan

- CYRIC@Tohoku Univ.
 - An irradiation facility with 70MeV proton beam (~1μA beam current).
 - 3-5 hours for $3x10^{15}n_{eq}/cm^2$ irradiation with (600nA beam)
 - This allows 2-3 pixel modules with Al plate at the same time(3% E loss/module).
 - Operated at -15°C temprature with dry N₂ gas.
 - Scanning over full pixel range during irradiation.
- LAL's Active Edge Pixel Modules
 - Irradiated LAL's module twice in 2016 and 2017.
 - First irradiation, observed disconnection of bumps after irradiation.
 - Second irradiation, it was successfully done and measured the device at DESY testbeam in March 2017.

backup

Testbeam campaign

Extremely important to test device performance

- DAQ and operation
- In-pixel and/or Edge efficiency
- Testbeam facility
 - CERN SPS : 120GeV π + beam
 - DESY: 4-5GeV e+ beam
 - SLAC : 5-13GeV e- beam
 - FNAL: 120GeV proton beam
- Telescope planes (Track pointing to device)
 - EUDET based on MIMOSA26 monolithic CMOS detector placed in beamline at CERN/DESY/SLAC (~3um pointing resolution).
 - Huge experience of the testbeam operation as having testbeam 3-4 times a year
- Example: November testbeam @CERN
 - LAL&KEK devices are in the same runs together with UK, Norway's samples.
 - Excellent data taking was achieved.

Framework: ATLAS Upgrade for HL-LHC

High Luminosity LHC (HL-LHC)

- Start around 2026- with new crab cavity in the interaction region.
- Target : \sqrt{s} =14TeV L=5-7x10³⁴cm⁻²s⁻¹ $\int Ldt$ =3000-4000fb⁻¹
- Physics program focus on the precise measurements of the Higgs couplings (e.g. Y_{τ} , Y_{b} and $λ_{HHH}$) and BSM searches.

Tracking detector is key element

— To keep B/τ-tagging performance up to μ =200 pileup in an event.

Need to launch innovative solution for detectors, mechanics, efficient triggering and advanced

analysis technics.

The ATLAS upgrade plans full replacement of Inner Tracker

- All silicon tracker (Pixel & Microstrip)
- Requirements for Pixel detector
 - Pixel Size: 50um x 50um (or 25um x 100um)
 - Radiation @ outer layer : 3x10¹⁵n_{ea}/cm²
 - Thickness: 100 or 150um
 - Low noise (<100e) → 600e stable threshold
 - High Readout Rate: 5.2Gbps (or 4x1.28Gbps)

D_RD_20 program proposal

- Building production modules based on the developed pixel detector.
 - 2019-2020: preparation of production
 - 2021-2024: Production of the modules
- Constructing ITK pixel detectors is an extremely challenging project
 - >10000 quad planar pixel modules to be produced. About 20% of modules are build by us.
 - Finalize the design and construction method.
 - Development of Quality Control and Quality Assurance.
- Mainly we ask funding for exchange people between FR-JP
 - Share experience/common development