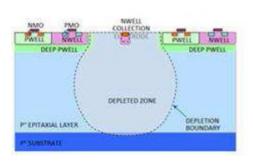
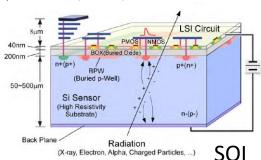


Development of Advanced Monolithic Pixel
Detector for the ILC experiment
(D RD 25)


Auguste Besson

On behalf of


Ishikawa Akimasa (PI) (IPNS/KEK), Ikuo Kurachi (AAT/KEK), Toru Tsuboyama (IPNS/KEK), Toshinobu Miyoshi (IPNS/KEK), Kazuhiko Hara (Tsukuba Univ.), Miho Yamada (Tokyo Met. College), Yasuo Arai (KEK)

And

Marc Winter (PI) (IJCLAB), Jérôme Baudot (IPHC), Christine Hu-go (IPHC), Macej Kachel (IPHC),
Andrei Dorokhov (IPHC), Frédéric Morel (IPHC), A.B. (IPHC)

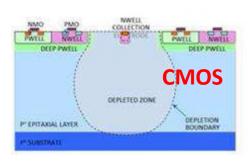
- Motivations
- Current activities
- Future Plans

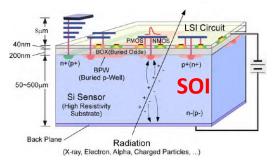
CMOS

(SOI figures taken from Y. Arai presentations)

Motivations

- Scientific target:
 - ✓ Vertex detector for future Higgs/top factories (ILC)
 - Physics program \Rightarrow Flavour tagging (b, c, τ),
 - low momentum jets, jet charge determination.
 - High granularity needed
 - ($\sigma_{\rm sp}$ ~ 3 μ m) \Rightarrow pitch ~15-20 μ m
 - Low material budget and low power consumption
 - $(\sim 0.1-0.3 \% X_0 / layer and P \sim 20-50 mW/cm^2)$

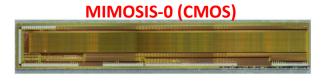


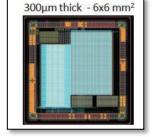

- $\sigma_b < 5 \oplus \frac{10}{p\beta sin^{\frac{3}{2}}\theta} \ \mu m$
- ${\color{blue} \blacksquare}$ Time resolution of the order of 1 μs to cope with the beam background
 - Bunch tagging capabilities ?
- ⇒ monolithic pixel detector technology
- Framework of this application:
 - ✓ 2 suited technologies (CMOS & SOI) developped by the partners
 - lacktriangleright Different levels of maturity and advantages \Rightarrow complementarity

✓ Explore the possible synergies between the different technologies

and know-how

- ✓ Most mature monolithic technology
- ✓ Widely used industrial process


- ✓ High density layout
- √ 3-D vertical integration
- ✓ Radiation hardness


Activity 1: CMOS to SOI translation

- MIMOSIS-0 @ IPHC (fabricated in 2019)
 - ✓ 1st Prototype developped for the CBM experiment program, based on ALPIDE (ALICE-ITS) architecture (⇒ demonstrator for Higgs factory)
 - \blacksquare Priority encoder read-out, t_{r.o.}~ 5 μs , σ_{sp} ~ 5 μm
- Idea: Translation from CMOS 4-Well TJ (180nm) to SOI LAPIS (200nm)

- ✓ Mask issue

 ⇒ 2nd submission
- ✓ 2 chips expected back from foundry in May 2021 (LAPIS 200 nm)
 - 1st: HEP applications \Rightarrow test Alpide/Mimosis-like pixels (FE), charge collection
 - 2nd: imaging ⇒ 192×128 pixels with rolling shutter or global shutter readout. Spectroscopic capabilities
- ✓ Complementarity with SOFIST family (KEK)
- ✓ Digital library developped in cooperation with KEK

Architecture devpt. in CMOS ⇒ SOI: to be pursued

Activity 2: SOI & SOFIST

- SOIPIX @ KEK: SOFIST (SOI-LAPIS 200nm)
 - Target: development for ILC-ILD vertex and inner tracking detectors

Concept:

- ✓ ILC beam = 200 ms dead time between bunch trains
- Time stamp & analog charge storage inside the pixel
- ⇒ bunch timing
- ✓ Challenge: power
- Last prototype: SOFIST-4
 - ✓ Privileged access to the T-Micron company
 - ✓ Includes 3D integration technology
 - Allows smaller pitch 20 μm
 - ✓ Promising results ⇒ Tests continuing

• Plans:

FIPPL-TYL 2021

- ✓ Dev. Binary read-out to mitigate Power
 - from CMOS ALPIDE/MIMOSIS architecture
 - Power mitigation
- ✓ Exploration of a new concept
 - Dual Timer Pixel (DuTiP)
 - Idea: Store timing but can receive a trigger input
 - Multi-hit timing possible

Devpt. of SOI: to be pursued

Bond Pad Passivation Back gate adjust electrode

High R-Si

COMP

Ramp
Signal

Time Stamp
Memory

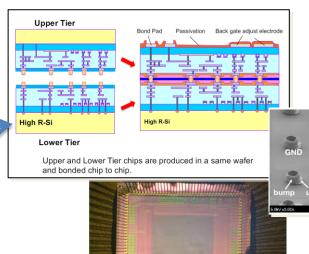
Memory

Ramp
Signal

Time Stamp
Memory

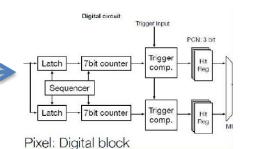
Nemory

Ramp
Signal


Time Stamp
Memory

Nemory

Nemory

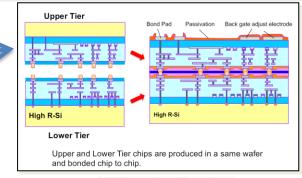

Ramp
Memory

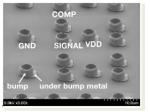
Nemory

DFIST4

en trough upp

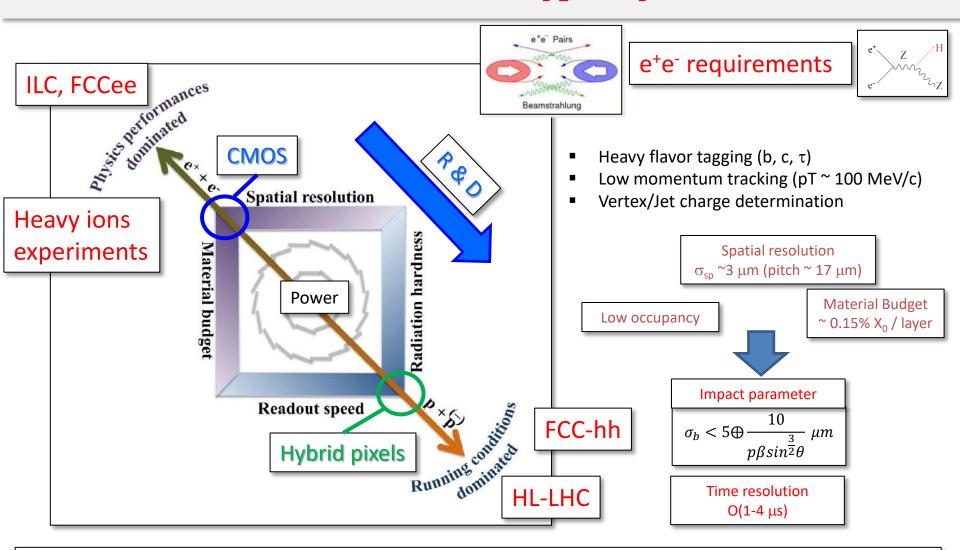
A.Besson, IPHC-Strasbourg University


Activity 3: CMOS & double-tier exploration

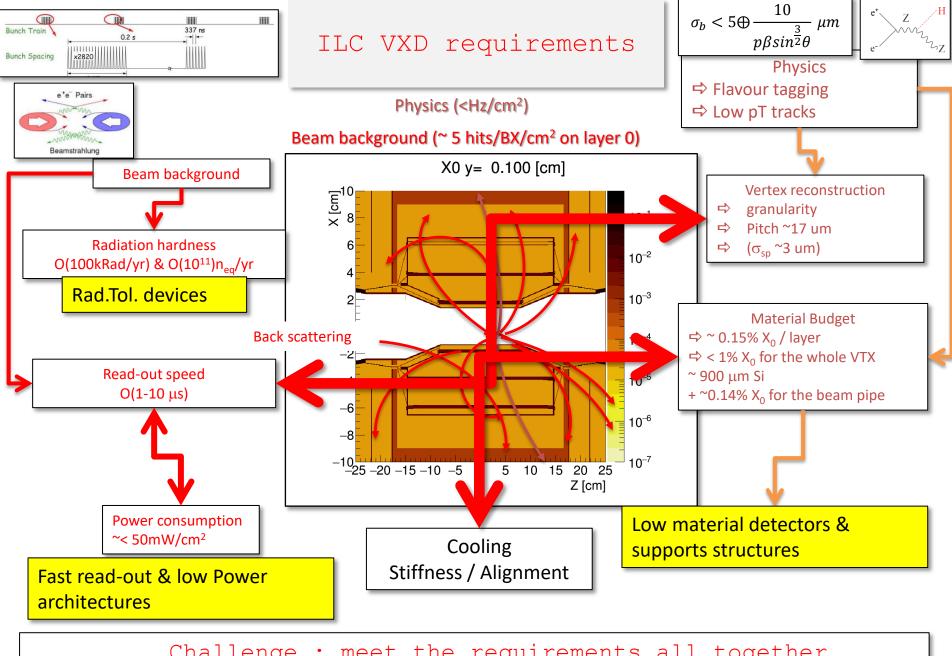


- Idea: Explore the Double-tier « 3D » in CMOS
 - TJ 180nm (4-Well) technology
 - ✓ Bonding performed by T-micron
 - (same company used for SOFIST)
 - Bonding pitch = 10 μ m.
 - Pitch = 20 μm
 - Both chips are sensitive + ouput logic in bottom chip
 - ✓ First try Issue: Unpassivation of pads not done properly
 - ✓ 2^{nd} submission expected back from foundry ~ July 2021
 - Goal: study
 - ✓ Direct read-out from bottom chip
 - ✓ Read-out after transmission trough bonding from top chip
 - Test capacitive noise between the 2 layers
 - Test pixel dispersion

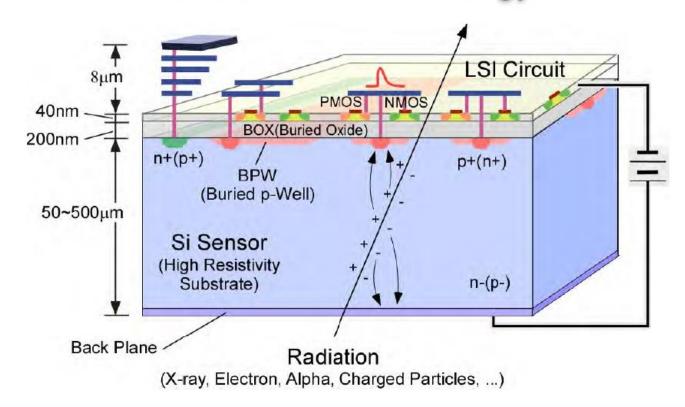
3D stacking used in SOI ⇒ CMOS : to be pursued


Summary & program

- R&D towards granular and thin pixel detectors
 - ✓ Target: ILC and beyond
 - CMOS & SOI technologies offer complementarity
 - ✓ Timescale of Higgs factories not precisely known (upgrades, etc.)
 - Final technology choices can be made only O(5) years before data taking
 - Need to continue to explore different technologies with different maturity/climax/advantages
- Collaboration between partners
 - ✓ Fruitful synergies produced significant outcomes in both technologies
 - Cross-fertilization.
 - ✓ Access facilitation to CMOS, SOI and 3D-stacking pixel technology
 - ✓ Ground floor for future collaboration @ ILC
 - ⇒ Pursue/extend the current collaboration
- Request
 - ✓ Mainly travel expenses
 - ⇒ further develop. digital library, design reviews, etc.
 - e.g. Visit to Japan: M. Kachel (engineer) for 2 weeks


Back up

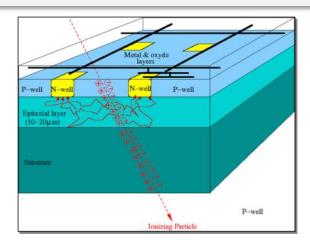
Vertex detector technology figure of merit


Challenge:

⇒Keep excellent <u>spatial resolution</u>, low <u>material budget</u>, moderate <u>Power consumption</u> and push towards better <u>time resolution</u> (BX)

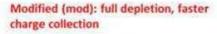
Challenge: meet the requirements all together

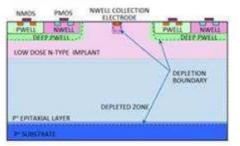
II. SOI Pixel Technology



- Fully depleted sensor: Fast signal, Good S/N
- CMOS logics without well structure: High density layout
- The detector can be very thin: Low material budget.

9


CMOS pixel sensor (CPS) for charged particle detection


- Main features
 - ✓ Monolithic (Signal created in low doped thin epitaxial layer $\sim 10-30~\mu m$)
 - ✓ Thermal diffusion of e- (Limited depleted region) + drift
 - ✓ Charge collection: N-Well diodes (Charge sharing)
 - ✓ Continuous charge collection (No dead time)
- Main advantages
 - √ Granularity
 - √ Material budget
 - ✓ Signal processing integrated in the sensor
 - Low signal & Low Noise
 - ✓ Flexible running conditions (Temperature, Power, Rad. Tol.)
 - ✓ Industrial mass production
 - Advantages on costs, yields, fast evolution of the technology,
 - Possible frequent submissions
- Main limitations
 - ✓ Industry addresses applications far from HEP experiments concerns
 - √ Needs adapted processes

