

Advanced optimization algorithms and neural networks for accelerators control

V. Kubytskyi

Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab) CNRS, Université Paris-Saclay

M. Satoh

High Energy Accelerator Research Organization (KEK), Accelerator Laboratory, Tsukuba, Ibaraki (Japan)

Laboratoire de Physique des 2 Infinis

OUTLINE

Introduction

ML activity at Accelerator Division at IJCLab

Study program for SuperKEKB linac

A-RD-21 Project status

2020 – blanc year 2021 – resubmit, new participant

ID¹:	Title: Advanced optimization algorithms and neural networks for accelerators control					
	French Group			Japanese Group		
	Name	Title	Lab./Organis.2	Name	Title	Lab/Organis,3
	V. Kubytskyi	Dr.	IJCLab/IN2P3	M. Satoh	Assoc. Prof.	Accelerator
Leader	kubytsky@lal.in2p3			masanori.satoh@kek.j		Lab/KEK
(please add	.fr			p		
email	H. Guler	Dr.	IJCLab/IN2P3	I.Satake	Enginnier	Accelerator
address)						Lab/KEK
	I. Chaikovska	Dr.	IJCLab/IN2P3	F. Miyahara	Assist. Prof.	Accelerator
Members						Lab/KEK
	E.Goutiere PhD stu	dent IJCLab/LRI		<u>K.</u> Furukawa	Prof.	Accelerator
		addire iddead/ Ei(i				Lab/KEK

Trends in Al

NUMBER of AI-RELATED PUBLICATIONS on ARXIV, 2015-20 Source: arXiv, 2020 | Chart: 2021 Al Index Report

Active research subject in application to accelerators

NUMBER of PEER-REVIEWED AI PUBLICATIONS, 2000-19

Source: Elsevier/Scopus, 2020 | Chart: 2021 Al Index Report

NUMBER of SPECIALIZED AI PROGRAMS in EU27, 2019-20

https://aiindex.stanford.edu/

ML for Accelerators

IN2P3/IRFU ML workshop, CERN ML workshop, OWLE seminars, online trainings, European projects (I.FAST) and many more.

Current ML studies at IJCLab Accelerators division:

Linac and Ring (THOMX), FJPPL, HIGH power laser (ML-COLA), positron sources, laser- plasma injector design.

For the moment not much of experimental DATA.

HIGH intensity laser optimisation (ML-COLA)

Proof of the principle experiment of Machine Learning based online Characterization and Optimisation of a high intensity LAser pulse (ML-COLA)

Integrated phase measurement single shot A(x,y,omega) in single snapshot!

Very precise but, not single shot (scan)
Time consuming: 10min on powerful
workstation

Optimize compressor parameters , such as angles and positions (u, v, d) of diffraction gratings. Spectral phase retrieval.

THOMX project at IJCLAB

ThomX - Compact source of X-rays

Producing a compact source of directional X-rays, with high performance, very bright, monochromatic and with adjustable energy for application to the field of medical science (imaging and therapy) and social science (artistic heritage), technology and industry.

- Linac and transfer line: find day to day repeatable beam conditions is challenging task (temperature conditions, laser jitter, ...).
 Reproducible beam dynamics. Injection matching with Ring.
- Ring: Need to stabilize machine, find stable orbit.
 First turns need to match several parameters.
 There are empirical ways. Machine expert can do (experience).
 We search for automatization/guiding. Study case.

Waiting for ASN (Nuclear Safety Authority) permission to start

THOMX LINAC TUNING WITH LEARNING METHODS

PACULTÉ DES SCIENCI

TUNING AND DIAGNOSTICS OBJECTIVES

Photocathode alignment
Solenoid alignment
Accelerator section misalignment detection

PROBLEMATICS

One observation of the sensors does not give a value of the various misalignments

GOAL

Using a minimal number of actions to tune the Linac

MODEL CALCULATION

- Establishment of an analytical model
- Validation of these models on simulator

VALIDATION

- Works for the laser & solenoid alignment
- Probably too complicated for a more complicated task

SuperKEKB linac

Pulse-to-pulse measurement up to 50 Hz (all data have been stored)

(BPM: x100, rf monitor: x60, pulsed magnet: x100)

All other data (~ 80,000) have been recorded (1 s to 10 s sampling period)

- DC magnet
- cooling water/room temperature
- rf gun laser power, phase
- vacuum pressure

Simultaneous top up injection

- Super KEKB HER 7 GeV e-LER 4 GeV e+
- Light sources PF 2.5 GeV e-PF-AR 5 or 6.5 GeV e-

LINAC daily operation

iniversite

Top level view on the **SuperKEKB 24-Hour Injection Summary**

A lot of DATA!
Japanese team:
Experts with good understanding of machine and DATA

Linac tuning goals and ML methodology

Goal: Optimal LINAC parameters for low emittance electron beam and for low injection noise background to BELLE2 detector.

Could we predict/improve emittance of SUPERKEKB e- beam, injection efficiency?

Linac must operate, destructive measurements are not possible

DATASET from EPICS PVs data:

collection, processing, alignment, understanding and labelling of the raw data (machine parameters, beam parameters, magnets, diagnostics, BPMs, pulsed elements, transport parameters, vacuum, temperatures, BELLE2 background). A lot of diagnostics can work at 50 Hz Work is ongoing.

Example of PVs list

```
# BEAM CURRENT

'SKB:BM_DCCT:HCUR'

'SKB:BM_DCCT:LCUR'

# BEAM SIZE MONITOR MEASUREMENT

'SKB:BMHSRM:BEAM:SIGMAY'

'SKB:BMHXRM:BEAM:SIGMAY'

'SKB:BMLSRM:BEAM:SIGMAY'

'SKB:BMLXRM:BEAM:SIGMAY'

# HER (E) and LER (P) INJECTION CHAIL
'SKB:CG_BTE:BPM:CHARGE_AVE'

'SKB:CG_BTP:BPM:CHARGE_AVE'

+++

+++
```


Model Training and Inference

FACULTÉ
DES SCIEI

2. Development of the ML models, training, test and validation.

Determine principal parameters. Tests of different approaches: XGBoost, Neural Networks, LSTMs, Reinforcement learning.

Control of the overfit.

At this stage we will need to understand our data.

Multiple interaction with machine experts.

Answer many questions: 50Hz, how to train models, data normalization, which assumptions and limits of applicability.

How well we generalize the model? How much data we need?

Do we need use advanced ML: ensemble methods, stacking?

3. Model tests on live data.

Nvidia Jetson nano (or eqivalent) for production and integration to EPICS channel.

Summary

Work on project started in 2021. Dataset preparation is ongoing. Progress meetings are previewed.

- Our aim is to learn/predict new useful knowledge from the linac data by applying existing ML techniques.
- At the beginning start from very simple model.