



# Exercise (2)

## Please calculate the RRR value of Nb sample and make a figure of temperature dependence of the resistivity.





RRR = 242.2





# Exercise (1)

### Please measure and calculate following parameters;

#### Cu sample at RT

L = 40 mm  
W = 5.25 mm  
t = 2.0 mm  
S = 
$$1.05 \times 10^{-5}$$
 m<sup>2</sup>

$$\rho = 1.67 \times 10^{-8} \Omega \text{ m}$$

Frequency = 1300 MHz  
Rs = 
$$9.25 \text{ m}\Omega$$

$$G = 270 \Omega$$

$$Q = 29189$$

## Nb sample at RT

$$I = 100$$
 mA  
 $V = 44.76$   $\mu V$   
 $R = 4.48 \times 10^{-4}$   $\Omega$ 

L = 40 mm  
W = 5.0 mm  
t = 2.5 mm  
S = 
$$1.25 \times 10^{-5}$$
 m<sup>2</sup>

$$\rho = 1.40 \times 10^{-7} \Omega \text{ m}$$

Frequency = 1300 MHz  
Rs = 26.8 m
$$\Omega$$

$$G = 270 \Omega$$

$$Q = 10075$$

## Nb sample at 9.3K

$$\rho = 5.81 \times 10^{-10} \Omega \text{ m}$$

Frequency = 1300 MHz  
Rs = 1.73 m
$$\Omega$$

$$G = 270 \Omega$$

$$Q = 156069$$



# Exercise (3)

### Please measure and calculate following parameters;

### **Cu cavity**

Frequency = 
$$1295.1$$
 MHz  
Loaded  $Q_L$  =  $25000$ 

$$P_{ref}$$
:  $S_{11} = -1.07$  dB  
 $P_{ext}$ :  $S_{21} = -36.6$  dB

$$Q_0 = 26540$$
  
 $Q_{in} = 4.17 \times 10^5$ 

$$Q_{ext} = 2.47 \times 10^7$$

$$\beta_{in} = 0.0616 \text{ (under)}$$

$$Z = 91.$$
  $P_{in} = 1.0 \text{ W}$   
 $E_{acc} = 6921 \text{ V/m}$ 

G = 270 
$$\Omega$$
  
 $R_S$  = 10.0 m $\Omega$   
 $\rho$  = 1.95x10<sup>-8</sup>  $\Omega$  m

## Nb cavity

Frequency = MHz  
Loaded 
$$Q_i = 4779$$

$$P_{ref}$$
:  $S_{11} = dB$ 

$$P_{ext}$$
:  $S_{21} = dB$ 

$$Q_0 = 9558$$

$$Q_{in} =$$

$$Q_{ext} =$$

$$\beta_{in} = 1.0$$

$$Z = 91.$$
  $P_{in} = 1.0 W$ 

$$E_{acc} = V/m$$

$$G = 270 \Omega$$

$$R_s = 28.2 \text{ m}\Omega$$

$$\rho = 1.55 \times 10^{-7} \Omega \text{ m}$$

$$P_{ref} = 10^{rac{S_{11}}{10}} \cdot P_{in} \left[W
ight]$$

$$P_{ext} = 10^{\frac{S_{21}}{10}} \cdot P_{in} \left[ W \right]$$



# Exercise (4)

### Please compare following parameters measured by DC and RF;

Frequency = 1300 MHz G = 270 
$$\Omega$$

#### **Copper**

#### DC:

 $Q_0 = 29189$  $R_S = 9.25 \text{ m}\Omega$ 

 $\rho$  = 1.67x10<sup>-8</sup>  $\Omega$  m

#### RF:

 $Q_0 = 26540$   $R_S = 10.0 \text{ m}\Omega$  $\rho = 1.95 \times 10^{-8} \Omega \text{ m}$ 

#### **Niobium**

#### DC:

Q = 10075 Rs = 26.8 m $\Omega$  $\rho$  = 1.40x10<sup>-7</sup>  $\Omega$  m

#### RF:

 $Q_0 = 9558$   $R_S = 28.2 \text{ m}\Omega$  $\rho = 1.55 \text{x} 10^{-7} \Omega \text{ m}$