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Introduction



Introduction

» Effective Field Theory (EFT):

- EFT is generated by integrating out dynamical degrees of freedom

- Information on UV theory is transferred through interaction b/w heavy and light degrees of freedom

Energy scale
4 Interaction

Heavy degrees of freedom < ---» Light degrees of freedom

Integrating out

~

EFT

UV information

Differences between theories with and without interaction characterize UV information

= Relative entropy characterizes their difference



Relative entropy % Tr{p] = Trlp] = 1, =

 Definition of relative entropy b/w two probability distribution functions p and p
S@Ilp)=Tr|plnp — plnp) A (f®) — fO)/(E = x)
- relative entropy is non-negative :

A proof:
J(x): a convex function = Tr[f(p) — f(p) — (p — p)f (p)] <0

P f(x) — xInx (convex function) ; s
S(@llp) 20 v

X)—f(x
% equality holds if and only if p = p Definition of convex function: ) )’)E—])Cc( ) < fl(x)

Relative entropy characterizes difference between two probability distributions



Our idea

* Relative entropy characterizes difference between two probability distributions

S(pallpp) = Tr |psInpy = pylnpg| >0
% equality holds if and only if p4, = pp

* Relative entropy provides guantitative difference between two things defined
by probability distribution functions

’ = PA —  /p
ST >0 SN | =0

What about relative entropy b/w theories with and without interaction?
= \We have to define probability distribution for each theory.

EX.




Probability distributions of theories

« We define probability distributions of theory described by Euclidean action [ as follows:

Probability distribution function: P[¢, @] = e~ 10l 7

Partition function: Z = Jd[¢]d[®]e_l[¢’¢]

where I: Euclidean action, ¢: light fields, ®: heavy fields

* Relative entropy between two theories
S(P,| | Pp) = Jd[gb]d[@] (PA InP, —P,In PB) > ()

where P, = e '4/Z,, Py = e '5/Z,



Definition of two theories

» We consider theories described by Lo, P| + L¢P, D]
x D: heavy fields, @: light fields

» We define /| ¢, ©| + ¢ - [,| ¢, D] by introducing parameter ¢

B: I [, D] + I[, D]

— > §
0 1

We consider relative entropy S(P, | | Pp)

x (D, @) of A is the same as that of B



Relative entropy between two theories

S(P, || Pp) = Jd[gb]d[d)] [PyInP,—PyInPg|< Py =e 0PlZ, Py = e~ hlPltsllo.P)7

Effective actions: W, = — In Ly, Wo=— In Z,

S(P, | | Pp) yields constraints on the Euclidean effective actions
even in quantum mechanical system

W,=—-InZ, Wy=—-1nZ%,




Bottom-up approach



Bottom-up approach

e Assumptions:

- EFT is generated through interaction b/w heavy and light fields

1, @] = J(d“x)E@[cb]@J[qb] ~ heavy

where we assume J|¢| does not involve higher-derivative terms
% It would be subdominant

Energy scale
A
unknown

UV theory

Known

EFT

What is the consequence of the non-negativity of relative entropy

In the bottom-up approach?



Tree-level UV theory

Second or higher order of g

14, ®] = [(d‘*x)E@[cD]@J[qb] _ heavy

% Linear terms of heavy field can be removed by field redefinition

* EX. Single mass less field theory with shift symmetry

Effective action:

_ 1 . Ctree .
Wl d] = J(d4x)E<—5(1 + agee)(aﬂqﬁ’ﬁﬂﬁ) ]\244 (dﬂgb’d”qﬁ’)z) where a5, ¢;*® : second or higher order of g

{ree

= [ (d*%); —l(a D" h)——2—(1+a™) 20 do*p)* | where ¢ = (1 +a™)"2. %" d¢ = const.
o U 2 M 2

M4
¥ o remove dim-6 terms

* Relative entropy

—~ —~ C —~ o~
S(Pol 1P = Wol 1= W[ @1+ (0W,/0g) =g ‘ZJ(d4x)E(aﬂ¢a”¢)2 >0 = cee >
g:

Relative entropy constrains Wilson coefficient of dim-8 operator



One-loop Ievel Uv theory First order of g Second or higher order of g

4
4

I, @] = [(d4x)E@[®]®J[¢] = heavy . m_ . |i jg gﬁ'J[qb]

A

» Example of EFT: Single massless field theory with shift symmetry(¢p — @ + const.)

loo
: : | 1 / / 2 / /
Effective action: Wlg]= J(d4x)E<—5(1 a,"® + a,"P)(0,¢'0" ") —(0,4'0" ¢ )2>
where a.° : first order of g and a.°%, ¢\°°P : second or higher order of g

1 2 2

Relative entropy constrains Wilson coefficient of dim-8 operator

Cloop

Py 1P = Wl 1= W @1+ (W, J0g) == J(d‘*x)E(aﬁaﬂ'qF)Zzo L e s g
-




Class of theories

|
* Reason why bounds on higher-derivative terms arise: J(d“X)E( 5 (00" P) 1\;4 @,ﬁbd”qb)z)

= corrections to non-higher derivative term can be removed by field redefinition

EX. b —> p+6p, Al > Aj+06AL 8, — 8,068,

SMEFT SU(N) gauge bosonic operators

" 1 1
4 a a,uUr | E

Einstein-Maxwell theory with higher-derivative terms

[ M? 1 o o . o ]
4 —o |—Plp _ — pv 1 [UAVY 2 UL\2 3 ULVPO
| d’x\/—g 5 R 4F WF 4Mf)l1 (F WF )- + v, f,ll (F MVF )- + 2MI2,1 F /WF pO_R

Relative entropy vields constraints on the above higher-derivative terms in the
bottom-up approach.

= The same procedures as a single massless field with shift symmetry work well



Entropy constraints on SMEFT gauge bosonic operators

* Non-negativity of relative entropy:

X lﬂ, kﬂ : constant vectors
4 4 4 pd _pd
« Ul)y: >0, ¢ >0, 4cfcd > (@),

4 4 4 4 4 4 4 4 ~wt o
e SUR),: ¢ +¢ 20, ¢ +¢ 20, 4 +)e) +¢)) =@ +&) ),
: G* G* G* G* G* G* G* G* G*
. SU(3)C L 2¢ +¢ 20, 3¢y +2¢ 20, 3¢y +3¢] +¢, =20, 3¢/ +2¢ =20,
- Wal Wal
4(361G4 + 3C3G4 + CSG4)(362G4 + 3cf4 + C6G4) > (36?4 + 36‘2G + c3G )2

4(3¢S" +2¢9Bc8 +2¢8°) > (385" +2857)?

These bounds are consistent with positivity bounds from unitarity and causality
[G.N. Remmen, and N.L. Rodd, arXiv:1908.09845]



Entropy constraints on Einstein-Maxwell theory

* Non-negativity of relative entropy:

a a ~ a
S(Py| 1P = J(d4x>E\/§ (4Ml4 (Fu PP + e (B 0+~ F F RW) > 0
Pl Pl

7 MU PO
2M,

* For charged BH background field, thermodynamic relations yield

(AMy ) x — S(Py | \Pg) < 0 where Qis U(1) charge of BH

Extremal BH mass shift at fixed charge by higher derivative terms

Shift by higher-derivative terms

O O

charge-to-mass ratio of extremal BH: =] = > ]
M/ \/2Mp, (Mey + (AMy) 0/ 2Mp

Extremal BH can behave as a state with charge-to-mass ratio larger than one
= Mild Weak Gravity Conjecture

% This argument is based on a field theory approach and may not apply to theories with stringy particles.



Summary

e Differences between theories with and without interaction characterize UV information
 We quantified their differences by relative entropy

* In the bottom-up approach, i.e.,

Y 4
4 0
Y 4
4

I[¢, D] =J(d4x)E ® J[] = s’ : light

) 2
) 2
) 2
Al

where we assume J|¢| does not involve higher-derivative terms

we found that the non-negativity of relative entropy constrains EFTs, e.qg.,

SMEFT SU(N) gauge bosonic operators

Einstein-Maxwell theory with higher-derivative terms

* Relative entropy provides a new approach to constraining EFIs.



