Pion Polarizability Status Report

Murray Moinester
Tel Aviv University

M. Moinester, Pion Polarizability Status Report (2017), Conference C17-07-31, https://arxiv.org/ftp/arxiv/papers/1709/1709.05159.pdf

S. Scherer, M. Moinester, International Journal of Modern Physics A, Pion Polarizability Review, ~ May 2019

Gamma-pion Compton scattering, $\gamma\pi \rightarrow \gamma\pi$, depends mainly on the pion's charge. The next order scattering depends on the pion's electric & magnetic dipole moments. These are induced by the electric and magnetic fields of the gamma during γπ scattering: $d=\alpha E$, $\mu=\beta H$. Pion polarizabilities probe the rigidity of the quark-antiquark structure of the pion.

Chiral Perturbation Theory

Chiral perturbation theory (ChPT), based on an effective chiral Lagrangian, successfully describes interactions between pions (including photons) in the **non-perturbative low energy regime** of the strong interaction. Lagrangian expressed in terms of low-energy constants (LECs), determined by fitting to experimental data or derived from underlying theory.

- pion polarisability: electric α_{π} , magnetic β_{π}
 - leading structure-dependent contribution to Compton scattering
 - ChPT prediction obtained by the relation to $\pi^+ \to e^+ \nu_e \gamma$ [Gasser, Ivanov, Sainio, Nucl. Phys. B745, 2006] [PIBETA, M. Bychkov et al., PRL 103, 051802, 2009]

pion polarisabilities α_{π} , β_{π} in units of 10⁻⁴ fm³

ChPT (2-loop) prediction:
$$\alpha_{\pi} - \beta_{\pi} = 5.7 \pm 1.0$$

$$\alpha_{\pi} + \beta_{\pi} = 0.16 \pm 0.1$$

$$\alpha_{\pi} - \beta_{\pi} = 5.7 \pm 1.0$$
 $\alpha_{\pi} = 2.93 \pm 0.5$

$$\alpha_{\pi} + \beta_{\pi} = 0.16 \pm 0.1$$
 $\beta_{\pi} = -2.77 \pm 0.5$

Compton cross section

- ullet $s=(
 ho+
 ho_{\gamma})^2$ (squared) CM energy of the $\pi\gamma$ -system
- $ullet t = (p-p_\pi)^2 \sim \cos heta_{CM}$
- The polarisabilities α_{π} and β_{π} enter
 - with increasing s
 - as $\alpha_{\pi} \beta_{\pi}$ in backward angles
 - as $\alpha_{\pi} + \beta_{\pi}$ in forward angles (small, but s-enhanced)
 - as $\alpha_2 \beta_2$ with $(s m_\pi^2)^2/s$ dependence

Pion Compton Scattering

$$\pi \ \gamma \ \to \ \pi \ \gamma \qquad \qquad \vec{E} \qquad \qquad \vec{B} \qquad \vec{B} \qquad \vec{B} \qquad \qquad \vec{B}$$

• Two kinematic variables, in CM: total energy \sqrt{s} , scattering angle θ_{cm}

$$\frac{d\sigma_{\pi\gamma}}{d\Omega_{cm}} = \frac{\alpha^2(s^2Z_+^2 + m_\pi^4Z_-^2)}{s(sZ_+ + m_\pi^2Z_-)^2} - \frac{\alpha m_\pi^3 (s - m_\pi^2)^2}{4s^2(sZ_+ + m_\pi^2Z_-)} \cdot \mathcal{P}$$

$$\mathcal{P} = Z_-^2(\alpha_\pi - \beta_\pi) + \frac{s^2}{m_\pi^4} Z_+^2(\alpha_\pi + \beta_\pi) - \frac{(s - m_\pi^2)^2}{24s} Z_-^3(\alpha_2 - \beta_2)$$

$$Z_+ = 1 \pm \cos\theta_{cm}$$

- \bullet $\sigma_{tot}(s)$ rather insensitive to pion's low-energy structure
- Up to 20% effect on *backward* angular distributions of $d\sigma/d\Omega_{cm}$

Polarisability effect (NLO ChPT values)

Pion polarizabilities affect the shape of the $\gamma\pi$ Compton scattering angular distribution.

Pion Compton scattering: embedding the process

Radiative pion photoproduction

Photon-Photon fusion

Fixed-target experiment

- two-stage magnetic spectrometer
- high-precision, high-rate tracking, PID, calorimetry
- · broad kinematical range
- · ~250000 channels
- $\cdot > 800 \text{ TB/year}$

Runs with Hadron Beams 2004, 2008/09, 2012

- 190 GeV π^- beam on p and nuclear targets (C, Ni, W, Pb)
- Silicon microstrip detectors for "vertexing"

Target

Beam

recoil and (digital) ECAL triggers

The COMPASS Experiment

- - Tracking detectors
 - **RICH**
- El.-mag. calorimeter
- Hadronic calorimeter
- Muon identification

RICH

SM₁

Identifying the $\pi\gamma \to \pi\gamma$ reaction

Phys. Rev. Lett. 114, 062002 (2015)

- Energy balance $\Delta E = E_{\pi} + E_{\gamma} E_{\text{Beam}}$
- Exclusivity peak $\sigma \approx 2.6$ GeV (1.4%)
- \sim 63.000 exclusive events ($x_{\gamma} > 0.4$) (Serpukhov \sim 7000 for $x_{\gamma} > 0.5$)

Primakoff peak

Phys. Rev. Lett. 114, 062002 (2015)

- $\Delta Q_T \approx 12 \text{ MeV/c}$ (190 GeV/c beam \rightarrow requires few- μ rad angular resolution)
- first diffractive minimum on Ni nucleus at $Q \approx 190 \text{ MeV}/c$
- data a little more narrow than simulation → negative interference?

Determination of the pion polarizability by fitting the x_{γ} distribution of the Ratios $R_{\pi} = \sigma_{E}(x_{\nu}, \alpha_{\pi})/\sigma_{MC}(x_{\nu}, \alpha_{\pi} = 0)$ to the theoretical expression:

$$R_{\pi} = 1 - 72.7 \frac{x_{\gamma}^2}{1 - x_{\gamma}} \alpha_{\pi}$$

 $x_{\gamma}=E_{\gamma}/E_{\pi}$ is the fraction of the beam energy carried by the final state γ .

Systematic uncertainties were controlled by measuring $\mu^- \text{Ni} \to \mu^- \text{Ni} \ \gamma$ cross sections. Statistics (63K events) 10X previously. Phys. Rev. Lett. 114, 062002 (2015)

MEASUREMENT OF THE PI+ MESON POLARIZABILITIES VIA THE GAMMA P ---> GAMMA PI+ N REACTION.

J. Ahrens et al., Jul 2004, 34pp. Published in Eur.Phys.J.A23:113-127,2005 e-Print Archive: nucl-ex/0407011.

Radiative Pion Photoproduction

In the first model (model-1) the contribution, of all the pion and nucleon pole diagrams is taken into account.

C. Unkmeir, PhD Thesis, Mainz University, (2000)

In the second model (model-2), in additional to the nucleon and the pion pole diagrams the contribution of the Δ (1232), P_{11} (1440), S_{11} (1535), and Δ_{13} (1520) resonances is considered.

D. Drechsel, L. V. Fil'kov, Z. Phys. A349, 177 (1994)

Radiative π^+ -meson photoproduction from the proton ($\gamma p \to \gamma \pi^+ n$) was studied at the Mainz Microtron in the kinematic region 537 MeV < E $_{\gamma}$ < 817 MeV, 140° $\le \theta_{\gamma\gamma'} \le 180$ °, where $\theta_{\gamma\gamma'}$ is the polar angle between incident and final state gammas in the c.m. system of the outgoing γ and pion. The experimental challenge is that **the incident** γ -ray is scattered from an off-shell pion, and the polarizability contribution to the Compton cross section from the pion pole diagrams is only a small fraction of the measured cross section. The cross section of the process $\gamma p \to \gamma \pi^+ n$ integrated over s1 and t in the region where the contribution of the pion polarizability is largest. The dashed and dashed-dotted lines are predictions of model-1 and the solid and dotted lines of model-2 for α_{π} - β_{π} = 0 and 14×10⁻⁴fm³, respectively.

First use of $\gamma\gamma \to \pi^+\pi^-$ data used to deduce pion polarizabilities

The MARK-II experiment was carried out via the reaction $e^+e^- \rightarrow e^+e^-\pi^+\pi^-$ at a center-of-mass energy of 29 GeV for invariant pion-pair masses $M_{\pi\pi}$ between 350 MeV/c² and 1.6 GeV/c². The dominant two-prong leptonic background reactions $e^+e^- \rightarrow e^+e^-e^+e^-$ and $e^+e^- \rightarrow e^+e^-\mu^+\mu^-$ were carefully eliminated. Previous experiments did not sufficiently eliminate these backgrounds.

Chiral symmetry and pion polarizabilities

D. Babusci a, S Bellucci a, G. Giordano a, G Matone a, A M. Sandorfi b and M A Moinester c

- INFN, Laboratori Nazionali di Frascati, P O Box 13, I-00044 Frascati, Italy
- b Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA
- School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 69978 Ramat Aviv, Israel

Received 8 November 1991

We use chiral perturbation theory including one-loop contribution to derive formulae needed to deduce pion polarizabilities for $\gamma\pi\to\gamma\pi$ and $\gamma\gamma\to\pi\pi$ data. We deduce for the first time values for the π^\pm and π^0 polarizabilities from $\pi\pi$ production data, and compare these new results to chiral symmetry predictions

Table I Values for $\bar{\alpha}_{\pi}$ from data and theory

PLUTO	191	±48(stat) ±57(syst)
DM1	17 2	±46(stat)
DM2	26 3	±74(stat)
LEBEDEV	20	±12 (stat)
MARK II	2 2	$\pm 16(stat + syst)$

Charged pion polarizabilities were determined by comparing total cross section data ($\gamma\gamma \to \pi^+\pi^-$) with a ChPT one-loop calculation. Theoretical curves are shown for Born (dash-dotted line) and ChPT with $\alpha_{\pi}^-\beta_{\pi}$. The cross section excess below $M\pi\pi = 0.5$ GeV compared to the Born calculation was interpreted as due to pion polarizabilities, with best fit value $\alpha_{\pi}^-\beta_{\pi} = (4.4 \pm 3.2_{\text{stat+syst}}) \times 10^{-4} \text{ fm}^3$.

Dispersion Relations and Pion Polarizabilities

Pion polarizabilities are determined by how the $\gamma\pi\rightarrow\gamma\pi$ Compton scattering amplitudes approach threshold. By crossing symmetry, the $\gamma\pi\rightarrow\gamma\pi$ amplitudes are related to the $\gamma\gamma\rightarrow\pi\pi$ amplitudes. Dispersion relations (DRs) provide the method to continue the $\gamma\gamma$ amplitudes analytically to the Compton scattering threshold.

Dai and Pennington DR calculations use COMPASS $\alpha_{\pi}^{-}\beta_{\pi} = 4.0 \times 10^{-4} \text{ fm}^{3}$ and Mainz $\alpha_{\pi}^{-}\beta_{\pi} = 11.6 \times 10^{-4} \text{ fm}^{3}$ to calculate $\gamma\gamma \to \pi^{+}\pi^{-}$ and $\gamma\gamma \to \pi^{0}\pi^{0}$ cross sections. For COMPASS, they find agreement for $\gamma\gamma \to \pi^{+}\pi^{-}$ and $\gamma\gamma \to \pi^{0}\pi^{0}$. But Mainz value is excluded by the $\gamma\gamma \to \pi^{0}\pi^{0}$ data. Also considering the large difference between Mainz and COMPASS-MARK-II values, the Mainz polarizability value is excluded from the summary here.

The pion polarizability combination $(\alpha_{\pi}-\beta_{\pi})$ was measured by:

(pion Bremsstrahlung) in the nuclear Coulomb field, $\pi Z \to \pi Z \gamma$, equivalent to $\gamma \pi \to \gamma \pi$ Compton: $\alpha_{\pi} - \beta_{\pi} = (4.0 \pm 1.2_{\text{stat}} \pm 1.4_{\text{syst}}) \times 10^{-4} \text{fm}^3$

(1) CERN COMPASS via radiative pion Primakoff scattering

(2) SLAC PEP Mark-II via two-photon production of pion pairs,
$$\gamma\gamma \rightarrow \pi^+\pi^-$$
: $\alpha_{\pi}^-\beta_{\pi} = (4.4 \pm 3.2_{\text{stat+syst}}) \times 10^{-4} \text{ fm}^3$

They are in good agreement with the two-loop ChPT prediction $\alpha_{\pi} - \beta_{\pi} = (5.7 \pm 1.0) \times 10^{-4} \, \text{fm}^3$, thereby strengthening the identification of the pion with the Goldstone boson of QCD.