The spectra and decay widths of hybrid quarkonia in a hyperspherical-coordinate framework

T. Miyamoto & S. Yasui

13 November 2018

The 8th International Conference on Quarks & Nuclear Physics

Tuskuba International Congress Center

Any net number of quarks (# of q - # of anti-q) that is divisible by 3, plus any number of valence gluons (except for a single gluon with no quarks) can form a colour singlet.

Meson Baryon eg proton (uud) $N_q=1$ $N_q=3$ $N_{ar{q}}=1$ $N_{ar{q}}=0$

$$N_q = 4$$
$$N_{\bar{q}} = 1$$

glueball meson

$$N_g \ge 2$$

hybrid meson

$$N_q = N_{\bar{q}} = 1$$
$$N_q \ge 1$$

Various exotic meson candidates X(3872), Y(4260), Y(4360), etc

Y(4260)

$$e^+e^- \to \gamma \pi^+\pi^- J/\psi$$

Discovered by the BaBar group through initial state radiation (ISR) events

Another evidence provided by the Cleo collaboration

Width ~ 90 MeV

Relativistic single resonance Breit-Wigner fit

The measured dipion mass distribution agreed with the theoretical Monte Carlo S-wave phase space model

- B. Aubert et al, Phys. Rev. Lett 95 142001 (2005)
- Q. He et al, Phys. Rev. D 74 091104 (2006)
- J. Beringer et al, Phys. Rev. D 86 010001 (2012)

 $J^{PC} = 1^{--}$

Y(4260) $\psi(4260)$

Tetraquark ccss interpretation

needs the channel of $D_s + \bar{D}_s$ DD_1 molecule interpretation Y4260 close to DD_1

$$e^-e^+ o \begin{cases} \pi^+\pi^-J/\psi \\ \pi^+\pi^-h_c \\ \omega\chi_{c0} \end{cases}$$

The single-resonance assumption is naïve to determine the mass & the width of Y(4260). → Average the mass and width determinations in the 3 channels - Y4260 label "retired" (Olsen 2017)

 $D\bar{D}_1$ B.E. soars to 66 MeV

$$M(Y4220) = 4222 \pm 3$$

 $\Gamma_{\text{tot}} = 48 \pm 7$

Hybrid meson

 $H_B: c\bar{c} + \text{ P-wave gluon}$

Selection rule to restrict the decay of the hybrid (The decay into two S-wave open charm mesons is prohibited)

Gui-Jun Ding, Phys. Rev. D79, 014001 (2009) E. Kou & O Pene, Phys. Lett. B 631 (2005) 164

The main motivation for searching for hybrid quarkonia

$$\Gamma = 55 \pm 19 \quad \psi(4260) \to J/\psi + \pi + \pi, \quad J/\psi + K^{+} + K^{-}$$

$$\Gamma = 96 \pm 7$$
 $\psi(4360) \rightarrow \psi(2S) + \pi^{+} + \pi^{-}$

$$\Gamma = 62 \pm 20 \quad \psi(4415) \to D\bar{D}, \quad D^*\bar{D} + cc, \quad D^*\bar{D}^*$$

etc

$$\Gamma = 72 \pm 11 \quad \psi(4660) \rightarrow \psi(2S) + \pi^+ + \pi^-$$
 MeV

At the end of the day, are they hybrid quarkonia?

7(10860)

$$I^G(J^{PC}) = 0^-(1^{--})$$

Mass $m = 10889.9^{+3.2}_{-2.6} \text{ MeV}$ Full width $\Gamma = 51^{+6}_{-7} \text{ MeV}$ $\Gamma_{ee} = 0.31 \pm 0.07 \text{ keV}$ (S = 1.3) They have similarities in decay patterns, masses & parity and C-parity

7 (10860) DECAY MODES	Fraction (Γ_i/Γ) Co	onfidence level	p (MeV/c)
в В х	(76.2 +2.7) %		_
B <u>B</u>	(5.5 ±1.0)%		1332
<i>B</i> B * + c.c.	(13.7 ±1.6)%		-
B* B *	(38.1 ±3.4) %		1138
$B\overline{B}^{(*)}\pi$	< 19.7 %	90%	1027
$B\overline{B}\pi$	(0.0 ±1.2)%		1027
$B^*\overline{B}\pi + B\overline{B}^*\pi$	(7.3 ±23)%		-
$B^*\overline{B}^*\pi$	(1.0 ±1.4)%		756
$B\overline{B}\pi\pi$	< 8.9 %	90%	574
$B_s^{(*)} \overline{B}_s^{(*)} B_s \overline{B}_s$	(20.1 ±3.1)%		919
$B_s \overline{B}_s$	(5 ±5)×10 ⁻¹	-3	919
$B_s \overline{B}_s^* + \text{c.c.}$	(1.35±0.32) %		-
$B_s^* \overline{B}_s^*$	(17.6 ± 2.7)%		566

$$J^{\rm PC} = 1^{--}$$

Hybrid meson

Hybrid charmonium as a bound state of $c\bar{c}$ plus a gluon

Gluon carries the adjoint representation 8 of SU(3) – it can be linked to a quark & antiquark to form a colour singlet object.

For a magnetic (transverse electric) gluon:

$$P = (-1)^{(L_{q\bar{q}} + J_g)}, \quad C = (-1)^{L_{q\bar{q}} + S_{q\bar{q}} + 1}$$

$$L_g = J_g$$

The lowest state:
$$L_{q\bar{q}}=0\;,\quad J^{PC}=1^{--}$$

For an electric (transverse magnetic) gluon:

$$P = (-1)^{(L_{q\bar{q}} + J_g + 1)}, \quad C = (-1)^{L_{q\bar{q}} + S_{q\bar{q}} + 1}$$

$$L_g = J_g \pm 1$$

A. Le Yaouanc et al, Z. Phys. C – Particle & Physics 28, 309 (1985)

Note:

Cf: electric, magnetic photon (radiation) carries parity of:

$$(-1)^l, (-1)^{l+1}$$
 $P = (-1)^{L+1}$

Hyperspherical Formalism

$$\mathcal{Y}_{\mathrm{KLM_L}}^{\mathrm{L_x L_y}}(\Omega_5) \stackrel{\mathrm{def}}{=} \mathcal{N}(K, L_x, L_y) A_n^{L_x L_y}(\alpha) \left[Y_{L_x}(\Omega_x) \otimes Y_{L_y}(\Omega_y) \right]_{LM_L}$$

$$A_n^{L_x L_y}(\alpha) = (\cos \alpha)^{L_x} (\sin \alpha)^{L_y} P_n^{L_y + 1/2, L_x + 1/2} (\cos 2\alpha)$$

$$\mathcal{N}(K, L_x, L_y) = \sqrt{2(K+2)} \sqrt{\frac{\Gamma(n+1)\Gamma(L_x + L_y + n + 2)}{\Gamma(L_x + n + 3/2)\Gamma(L_y + n + 3/2)}}$$

$$\mathbf{Y}$$
 \mathbf{Y}
 \mathbf{Y}
 \mathbf{r}_{g}

$$\Psi_{JM_J}(\mathbf{x}, \mathbf{y}) = \frac{1}{\rho^{5/2}} \sum_{K, \gamma} \chi_{K, \gamma}(\rho) \Upsilon_{K\gamma}^{JM_J}(\Omega_5)$$

$$\Upsilon_{K\gamma}^{JM_J}(\Omega_5) = \left[\mathcal{Y}_{\mathrm{KL}}^{\mathrm{L_xL_y}} \otimes |S\rangle \right]_{JM_J}$$

$$\left[\frac{\mathbf{p}_x^2}{2m_x} + \frac{\mathbf{p}_y^2}{2m_y} + (\dots)\right]\Psi = E\Psi$$

$$-\frac{\hbar^2}{2m_b} \left[\frac{\partial}{\partial \rho^2} - \frac{(K+3/2)(K+5/2)}{\rho^2} + (...) \right] \chi = E\chi$$

A. Novoselsky et al. Phys. Rev. A 49, 833 (1994)

The Hamiltonian for the hybrid quarkonia

Auxiliary field methods -quantisation

-massless particles

*variational approaches

$$H(\mu, \mu_g) = H_0 + V$$

$$H_0 = \mu + \frac{\mu_g}{2} + \frac{m^2}{\mu} + \frac{\mathbf{p}_X^2}{\mu} + \frac{\mathbf{p}_Y^2}{2\phi}$$

$$V = \sigma |r_{qg}| + \sigma |r_{\bar{q}g}| + V_C$$

$$V_C = -\frac{3\alpha_s}{2r_{qg}} - \frac{3\alpha_s}{2r_{\bar{q}g}} + \frac{\alpha_s}{6r_{q\bar{q}}}$$

 σ : energy density

 α_s : the strong coupling constant

$$\mathbf{X} = \mathbf{r}_q - \mathbf{r}_{\overline{q}}$$
 $m_q = m_{\overline{q}} = m$
 $\mu_q = \mu_{\overline{q}} = \mu$
 $\mathbf{Y} = \mathbf{r}_g - \frac{\mathbf{r}_q + \mathbf{r}_{\overline{q}}}{2}$

V. Mathieu, Phys. Rev. D 80, 014016 (2009)

DD or BB decay channels of a hybrid quarkonium

- A hybrid quarkonium contains an electric gluon (and here the S-wave gluon).
- We consider the lowest order decay.
- The initial states are derived directly from the Fourier transformation of the calculated (configuration space) wave functions of hybrid quarkonia.
- The final states are treated in a nonrelativistic way, where Gaussian-type functions are used for their wave functions. More suitable for a bottomonium hybrid

$$\Gamma_{A\to BC} = 4\alpha_s |f_{A\to BC}|^2 \frac{P_B E_B E_C}{m_A}$$

F. Iddir & A. S. Safir, Phys. Lett. B 507 (2001) 183-192

Charmonium Hybrid

The calculated ground state (for the magnetic gluon) consistent with earlier studies (Kalashnikova 2008, Mathieu 2009)

DD decay channels of a hybrid charmonium

		$D\bar{D}$	$D^*\bar{D}+D\bar{D}^*$	$D^*\bar{D}^*$	$D_s^+D_s^-$	Total
$\Gamma_{GS \to D^{(*)} \bar{D}^{(*)}}$	$J_{q\bar{q}}$ 0 1 2	123.36 370.08 616.80	344.41 258.30 430.51	127.25 109.07 36.35		608.5 777.9 1151.1
$\Gamma_{1st \to D^{(*)}D^{(*)}}$	$J_{q\bar{q}}$ 0 1 2	28.87 86.61 144.36	81.19 60.89 101.48	70.53 60.45 20.15	6.64 19.94 33.23	187.2 227.9 299.2

(MeV)

- That would be much larger than experimental data (~50 MeV)
- It seems unlikely that they are electric-gluon hybrid

$$\psi(4260)$$
 $\psi(4360)$ $\psi(4415)$ $\psi(4660)$

$$\Gamma = 55 \pm 19$$
 $\Gamma = 96 \pm 7$ $\Gamma = 62 \pm 20$ $\Gamma = 72 \pm 11$

Short Summary

- If one of these hybrid meson candidates (Y(4260), Y(4360), Ψ(4415), X(4660)) is a hybrid meson, it should be a magnetic gluon hybrid.
- ** Decay widths too large, for the decays from both the ground & the 1st excited states
- ** The calculated spectra of $\Psi(4415)$ comparable to the data
- It seems unlikely that Upsilon(10860) is the ground state of an electric gluon hybrid bottomonium.
- Still, there could be a possibility that Upsilon(10860) is the first excited state of an electric gluon hybrid bottomonium
- Also, we do not rule out the possibility that the first excited state of a bottomonium hybrid can be discovered as a state which is different from Upsilon(10860)
- Something is missing?
- ** higher components of orbital angular momenta
- ** higher order decay effects
- ** higher order potential effects

Bottomonium Hybrid

BB decay channels of a hybrid bottomonium

		$B\bar{B}$	$B^*\bar{B}+B\bar{B}^*$	$B^*\bar{B}^*$	$B_s\bar{B}_s$	$B_s\bar{B}_s^* + B_s^*\bar{B}$	$B_s^* \bar{B}_s^*$	Total
set A $\Gamma_{GS \rightarrow B^{(*)}B^{(*)}}$	$J_{q\bar{q}}$							
0.0-7.11	0	77.01	158.36	34.02	_	_	_	269.4
	1	231.05	118.77	29.16	_	_	_	379.0
	2	385.09	197.95	9.72	_	_	_	592.8
$\Gamma_{1st \rightarrow B^{(*)}B^{(*)}}$								
	0	5.76	12.05	6.84	0.91	0.72	0.082	26.4
	1	17.29	9.04	5.86	2.75	0.54	0.070	35.6
	2	28.82	15.06	1.95	4.59	0.91	0.023	51.4
set B $\Gamma_{GS \rightarrow B^{(*)}\bar{B}^{(*)}}$								
G5→B · B ·	0	16.31	_	_	_	_	_	16.3
	1	48.95	_	_	_	_	_	49.0
	2	81.58	_	_	_	_	_	81.6
$\Gamma_{1st \rightarrow B^{(*)}\bar{B}^{(*)}}$								
200-721	0	14.26	37.22	34.47	1.56	1.77	0.17	89.5
	1	42.80	27.92	29.55	4.68	1.32	0.14	106.4
	2	71.34	46.53	9.85	7.81	2.21	0.04	137.8
$\Gamma_{exp}(\Upsilon(10860)$)	$2.80 {\pm} 0.51$	6.98±0.81	19.43 ± 1.73	$(2.5\pm0.2)\times10^{-3}$	0.69 ± 0.16	8.97±1.3	7

- The calculated widths are large enough to suggest that Upsilon(10860) is not the ground state of an electric gluon bottomonium hybrid
- The widths for the first excited state in set A and set B are comparable to the measured total width.
- Still, the calculated partial widths differ from the experimental data.
- Other decay channels, or does the running coupling constant matter? $BB\pi$, $BB\pi\pi$

Effective Potentials

Summary

- If one of these hybrid meson candidates (Y(4260), Y(4360), Ψ(4415), X(4660)) is a hybrid meson, it should be a magnetic gluon hybrid.
- ** Decay widths too large, for the decays from both the ground & the 1st excited states
- ** The calculated spectra of $\Psi(4415)$ comparable to the data
- It seems unlikely that Upsilon(10860) is the ground state of an electric gluon hybrid bottomonium.
- Still, there could be a possibility that Upsilon(10860) is the first excited state of an electric gluon hybrid bottomonium
- Also, we do not rule out the possibility that the first excited state of a bottomonium hybrid can be discovered as a state which is different from Upsilon(10860)
- Something is missing?
- ** higher components of orbital angular momenta
- ** higher order decay effects
- ** higher order potential effects