First γ -Ray Spectroscopy of an *sd*-shell Hypernucleus, $^{19}_{\Lambda}$ F

-QNP2018-November 14, 2018

Seongbae Yang for J-PARC E13 Collaboration

Department of Physics Korea University

Gamma-ray Spectroscopy of Λ-Hypernuclei at J-PARC

■ There was a J-PARC beam time for $^{19}_{\Lambda}$ F in June 2015.

PHYSICAL REVIEW LETTERS 120, 132505 (2018)

First Determination of the Level Structure of an sd-Shell Hypernucleus, ¹⁹F

S. B. Yang, 1.2,* J. K. Ahn, Y. Akazawa, K. Aoki, N. Chiga, H. Ekawa, P. Evtoukhovitch, A. Feliciello, M. Fujita, S. Hasegawa, S. Hayakawa, T. Hayakawa, R. Honda, K. Hosomi, S. H. Hwang, N. Ichige, Y. Ichikawa, M. Ikeda, K. Imai, S. Ishimoto, S. Kanatsuki, S. H. Kim, S. Kinbara, K. Kobayashi, T. Koike, J. Y. Lee, K. Miwa, T. J. Moon, T. Nagae, Y. Nakada, M. Nakagawa, Y. Ogura, A. Sakaguchi, H. Sako, Y. Sasaki, S. Sato, K. Shirotori, H. Sugimura, S. Suto, S. Suzuki, T. Takahashi, H. Tamura, K. Tanida, Y. Togawa, Z. Tsamalaidze, M. Ukai, T. F. Wang, 3 and T. O. Yamamoto 4

(J-PARC E13 Collaboration)

Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea ²Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan ³Department of Physics, Korea University, Seoul 02841, Korea ⁴Department of Physics, Tohoku University, Sendai 980-8578, Japan ⁵Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan ⁶Department of Physics, Kyoto University, Kyoto 606-8502, Japan ⁷Joint Institute for Nuclear Research, Dubna, Moscow Region 141980, Russia ⁸INFN, Sezione di Torino, via P. Giuria 1, 10125 Torino, Italy ⁹Advanced Science Research Center (ASRC), Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195, Japan ¹⁰Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan ¹¹Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea ¹²Faculty of Education, Gifu University, Gifu 501-1193, Japan ¹³Research Center of Nuclear Science and Technology (RCNST) and School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China

(Received 20 December 2017; revised manuscript received 15 February 2018; published 29 March 2018)

We report on the first observation of γ rays emitted from an sd-shell hypernucleus, ${}^{19}_{\Lambda}F$. The energy spacing between the ground state doublet, $1/2^+$ and $3/2^+$ states, of ^{19}F is determined to be $315.5 \pm$ $0.4(\text{stat})^{+0.6}_{-0.6}(\text{syst})$ keV by measuring the γ -ray energy of the $M1(3/2^+ \to 1/2^+)$ transition. In addition, three γ -ray peaks are observed and assigned as $E2(5/2^+ \to 1/2^+)$, $E1(1/2^- \to 1/2^+)$, and $E1(1/2^- \to 1/2^+)$ $3/2^+$) transitions. The excitation energies of the $5/2^+$ and $1/2^-$ states are determined to be $895.2 \pm$ $0.3(\text{stat}) \pm 0.5(\text{syst})$ and $1265.6 \pm 1.2(\text{stat})^{+0.7}_{-0.5}(\text{syst})$ keV, respectively. It is found that the ground state doublet spacing is well described by theoretical models based on existing s- and p-shell hypernuclear data.

DOI: 10.1103/PhysRevLett.120.132505

@PRL **120**, 132505 (2018).

ΛΝ Interaction and Λ-Hypernucleus

■ Λ-hypernucleus

Due to the short life time of Λ , a scattering experiment is impossible for the ΛN interaction. In this case, a spectroscopy of Λ -hypernucleus is the most powerful tool.

■ //W interaction

It is the first step to understand the general baryon-baryon interaction.

3

Gamma-Ray Spectroscopy of Λ Hypernuclei

■ Gamma-ray spectroscopy of Λ-hypernuclei

 \rightarrow By measuring energies of the γ rays, the split energy spacing is precisely estimated and we can know a fine structure of the hypernucleus.

■ Previous gamma-ray spectroscopy of Λ hypernuclei From 1998, several s- and p-shell hypernuclei were well studied through the method.

→ We continue this experiment at J-PARC.

Gamma-ray Spectroscopy of $^{19}_{\Lambda}$ F

- Precise level data for *s* and *p*-shell hypernuclei have revealed strengths of the spin-dependent ΛN interaction and the ΛNN interaction (ΛΣ coupling effect).
- It is the first measurement of fine structure of an *sd*-shell hypernuclei, beyond *s* and *p*-shell hypernuclei.

p 4He 1+ 0.692 MeV 0.692 MeV

They have $\bar{r}(d_N - s_\Lambda) > \bar{r}(p_N - s_\Lambda) > \bar{r}(s_N - s_\Lambda)$ and different wave functions. Can we apply the ΛN interaction to heavier hypernuclei?

SksMinus

Experimental Setup for J-PARC E13

- SKS & K1.8 Beamline Spectrometers
- → High resolution of missing mass
- \rightarrow Large acceptance for (K^-, π^-)
- → good beam decay suppressor (SP0, SMF)
- Hyperball-J
- \rightarrow ~25 HPGe detectors Δ E ~4.5 keV @ 1MeV
- → PWO counters Fast background suppression

SFV

Results of J-PARC E13

■ Λ binding energy spectra of ${}^{19}_{\Lambda}$ F. We selected the B_{Λ} range, $-21 < -B_{\Lambda} < -8$ MeV, to observe gamma rays emitted from the ${}^{19}_{\Lambda}$ F low-lying states.

 \blacksquare γ -ray spectra with three Λ binding energy conditions.

 \rightarrow There are four gamma rays from low-lying states of $^{19}_{\Lambda}$ F.

4. Results

Compared to the theoretical calculation [A. Umeya and T. Motoba, NPA 954, (2016) 242]

11

4. Results

■ Low-lying energy scheme of $^{19}_{\Lambda}$ F

 \rightarrow We clearly observed four γ rays from low-lying states of $^{19}_{\Lambda}\text{F}$ and successfully assigned them to their gamma transitions.

■ Effective AN interaction from Nijmegen SC97 models

Theoretical Calculation	(Experiment)	NSC97f	NSC97e
$\Delta E(3/2^+, 1/2^+)$ [keV]	$315.5 \pm 0.4^{+0.3}_{-0.2}$	419*	245*

*by A. Motoba and T. Umeya

$$419 \times 0.6(NSC97f) + 245 \times 0.4(NSC97e) = 315 \text{ keV}$$
?

*Similar to the case of s- and p-shell hypernuclei

→ 704 keV

 \rightarrow 1.24 MeV *⁴He and ⁴H(1⁺, 0⁺; 1.25 MeV in average)

Phenomenological calculation

Theoretical Calculation	(Experiment)	∕IN spin-dependent interaction at p-shell hypernuclei
$\Delta E(3/2^+, 1/2^+)$ [keV]	$315.5 \pm 0.4^{+0.3}_{-0.2}$	305*

*by D. J. Millener

- → The energy spacing, $3/2^+ \rightarrow 1/2^+$, is well represented by the spin-dependent interactions obtained from *s* and *p*-shell hypernuclei. It indicates that the present theoretical frameworks work quite successfully in describing structure of not only light *s* and *p*-shell hypernuclei but also a heavier one beyond p-shell hypernuclei.
- \rightarrow $\Lambda\Sigma$ coupling effect is negligibly small in the sd-shell hypernuclei?

Summary

- Gamma-ray spectroscopy of ${}^{19}_{\Lambda}$ F J-PARC E13 was successfully performed in June, 2015.
- We clearly observed four γ rays from low-lying states of ${}^{19}_{\Lambda}\text{F}$ and successfully assigned them to their gamma transitions.
- The energy spacing between the ground state doublet is determined to be 316 keV. It is well represented by the spin-dependent ΛN Interaction in p-shell hypernuclei.
- The experiment will be continued at the new constructed beam line (K1.1 beam line), and next targets are $^{4}_{\Lambda}$ H and $^{7}_{\Lambda}$ Li.

*Backup Slides

Gamma-ray Spectroscopy of ${}^{19}_{\Lambda}$ F (J-PARC E13 1st Phase)

- \blacksquare It is the first γ-ray spectroscopy for *sd*-shell hypernuclei.
- Energy spacing between ground state doublet (1/2+, 3/2+)
- → Radial dependency of the AN spin-spin interaction?
- → //N spin-dependent interaction with different wave-function?

* Backup Slides

	⁴ _Λ H	$^{7}_{\Lambda}{ m Li}$	¹⁹ _Λ F
Four-body Cluster model	(n) (p) + (A)	4He	160 p + 1
Wave- function	$s_N s_\Lambda$	$p_N s_\Lambda$	$(sd)_N s_\Lambda$
N, RMS radius [fm] <i>@by Millener, pl</i>	$2.5\;(0s)$ rivate communication	3.0 $(0p_{1/2})$ 2.9 $(0p_{3/2})$	$3.4 \ (1s_{1/2})$ $3.5 \ (0p_{1/2})$ $3.3 \ (0d_{5/2})$
Λ, RMS radius [fm] <i>@by Millener, pi</i>	3.5 (0s) rivate communication	2.6 (0 <i>s</i>)	2.3 (0 <i>s</i>)
ΔE_{χ} (ground state doublet)	1.1 MeV	0.695 MeV $(\Delta_{p_N S_{\Lambda}} = 0.43 \text{ MeV})$?

γ-ray Detector (Hyperball-J)

- $^{19}F(K^-, \pi^-)^{19}_{\Lambda}F^*, ^{19}_{\Lambda}F^* \rightarrow \gamma + ^{19}_{\Lambda}F$
- Hyperball-J
- \rightarrow 25 HPGe detectors $\Delta E \sim 4.5 \text{ keV}$ @ 1MeV
- → PWO counters Fast background suppression

Mechanical cooling system Crystal temp. ~70 K

*a view of K1.8 experimental hall

@NPA, 835, 3 (2012)