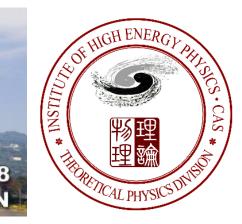
QNP2018

8th International Conference on Quarks and Nuclear Physics

> November 13(Tue) – 17(Sat), 2018 Tsukuba, Ibaraki, JAPAN



On the new resonance d*(2380)

---calculations in a chiral quark model

Yubing Dong (董宇兵)

Institute of High Energy Physics (IHEP),

Chinese Academy of Sciences

Collaborators: Qifang Lyu, Pengnian Shen, Fei Huang, Zongye Zhang

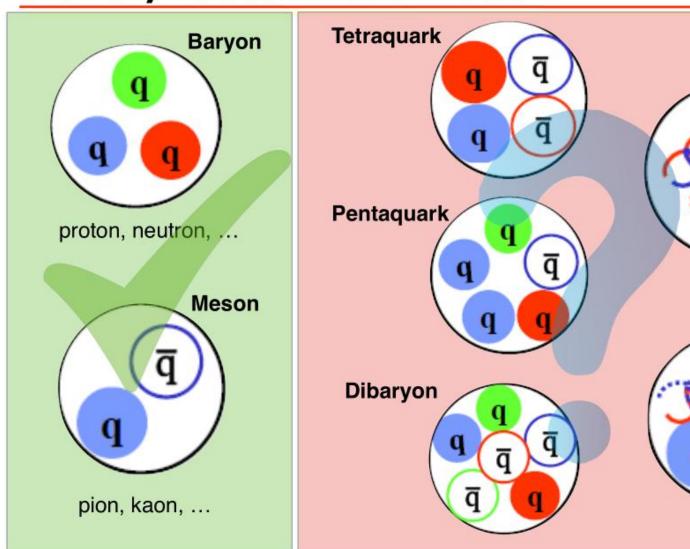
Contents

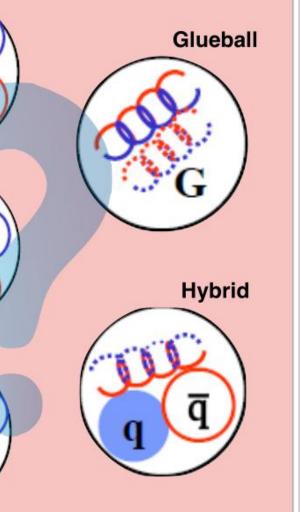
1. Observation of exotics, and dibaryon d*(2380)

- 2. Possible interpretations
- 3. Compact 6-quark dominanted structure in a chiral constituent quark model
 - (A) Mass and wave function
 - (B) Strong decays
 - (C) Charge distribution
- 4. Summary, remarks and outlook

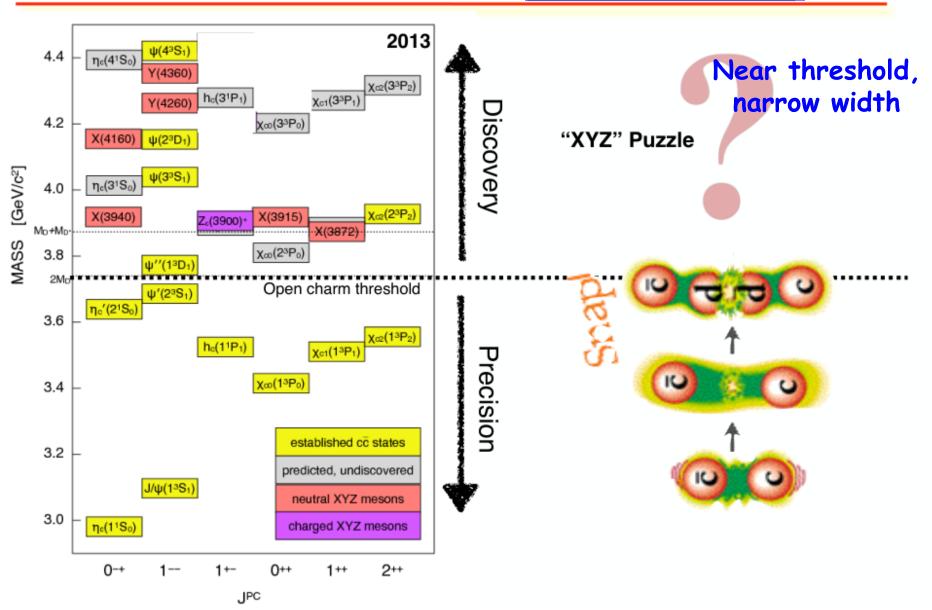
1 Observations of exotic

Ordinary versus "exotic" matter





Charmonium-like particles -



11/14/2018

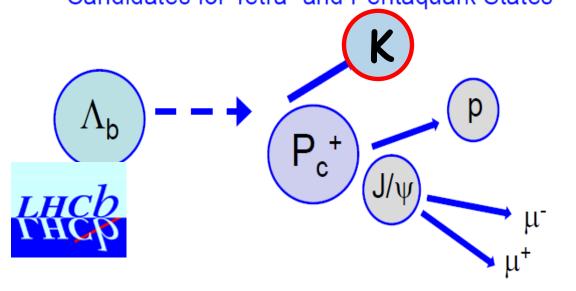
(New resonances, Five-Quark)

Pentaguark states Pc(4380)+, & Pc(4450)+

Observation of J/ψp resonances consistent with pentaquark states

PRL 115, 07201, arXiv:150

Exotic Hadron Spectroscopy at LHCb: Candidates for Tetra- and Pentaguark States



$$b \rightarrow c + \overline{c}s$$

Observation of $J/\psi\,p$ resonances consistent with pentaquark states in $\Lambda_b^0 \to J/\psi K^- p$ decays

The LHCb collaboration

Abstract

Observations of exotic structures in the $J/\psi p$ channel, that we refer to as pentaquark-charmonium states, in $A_b^0 \to J/\psi K^- p$ decays are presented. The data sample corresponds to an integrated luminosity of 3 fb⁻¹ acquired with the LHCb detector from 7 and 8 TeV pp collisions. An amplitude analysis is performed on the three-body final-state that reproduces the two-body mass and angular distributions. To obtain a satisfactory fit of the structures seen in the $J/\psi p$ mass spectrum, it is necessary to include two Breit-Wigner amplitudes that each describe a resonant state. The significance of each of these resonances is more than 9 standard deviations. One has a mass of 4380 \pm 8 \pm 29 MeV and a width of 295 \pm 18 \pm 86 MeV, while the second is narrower, with a mass of 4449.8 \pm 1.7 \pm 2.5 MeV and a width of 39 \pm 5 \pm 19 MeV. The preferred J^P assignments are of opposite parity, with one state having spin 3/2 and the other 5/2.

$$\Sigma_{c}\overline{D}$$
, $\Sigma_{c}^{*}\overline{D}$, $\Sigma_{c}\overline{D}^{*}$, $\Sigma_{c}^{*}\overline{D}^{*}$, $p \chi_{c1}$, $\psi(2S)p$

$$3^{-}/2$$
, $5^{+}/2(J^{p}?)$

$$P_{c}(4380)$$
, $P_{c}'(4449)$

Observation of d*(2380)

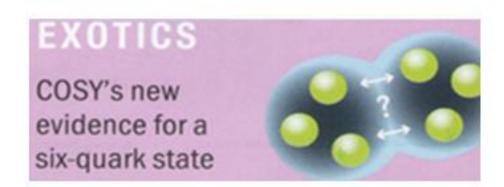
CERNCOURIER

CERNCOURIER

cerncourier.com/cws/article/cern/57836 (2014)

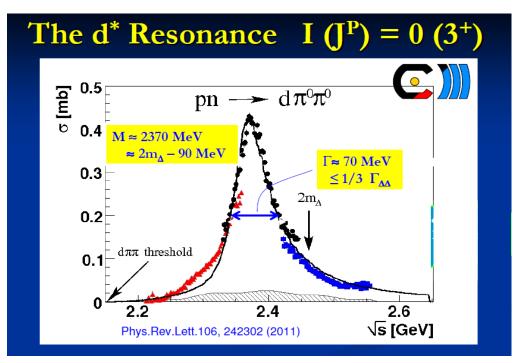
VOLUME 54 NUMBER 6 JULY/AUGUST 2014

Experiments at the Jülich Cooler Synchrotron (COSY) have found compelling evidence for a new state in the two-baryon system, with a mass of 2380 MeV, width of 80 MeV and quantum numbers | (f') = 0(3°). The structure, containing six valence quarks, constitutes a dibaryon, and could be either an exotic compact particle or a hadronic molecule. The result unswers the long-conding question of whether there are more eigenstates in the two-baryon system than just the deuteron ground-state. This fundamental question has been awaiting an answer since at 100 states of non-first Freeman Dyson and later Rouert Jaffe envisaged the possible existence of non-

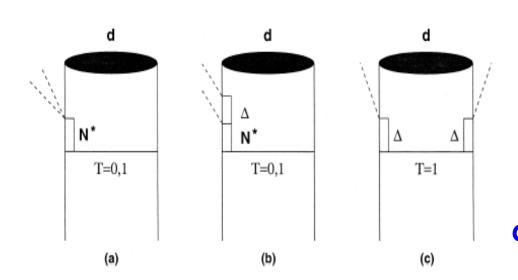


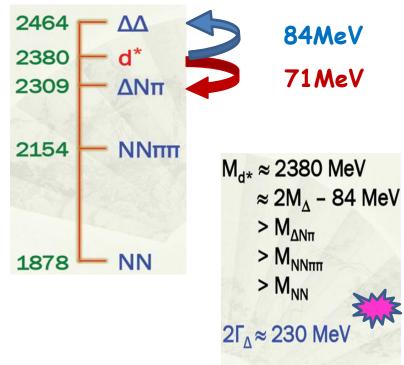
Experiments at the Jülich Cooler Synchrotron (COSY) have found compelling evidence for a new state in the two-baryon system, with a mass of 2380 MeV, width of 80 MeV and quantum numbers $I(J^P) = O(3^+)$...since 2009

6

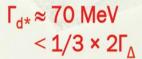


Baryon number=2





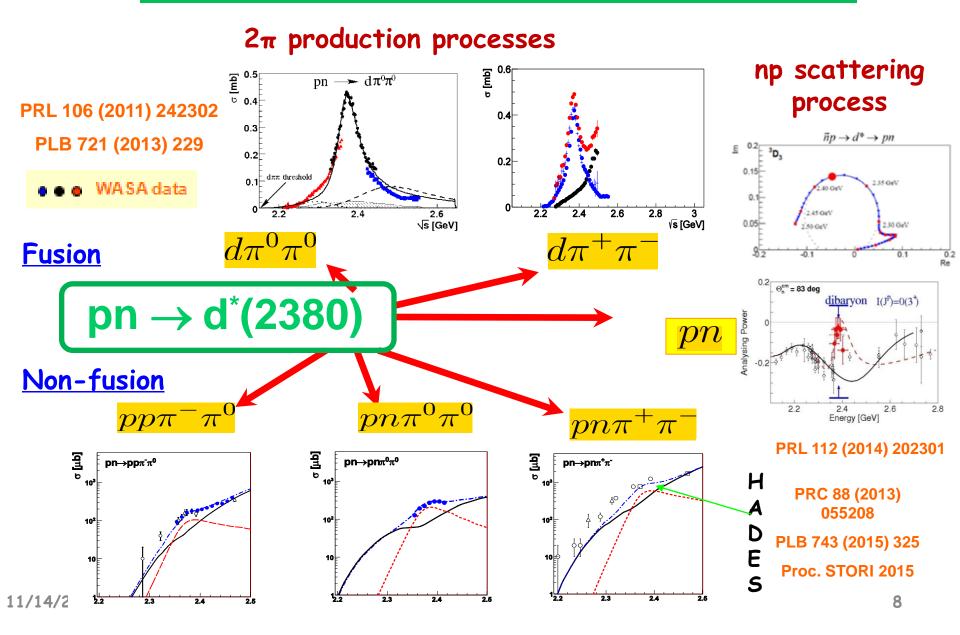
Unusual narrow width



Neither NN (Roper), nor $\Delta\Delta$ Intermediate state

d*(2380)

Signals in np procese @ COSY



Signals in other reactions @ COSY

fusion 2π processes

Measured also in fusion reactions to helium isotopes:

p + d
$$\rightarrow$$
 ³He + π^0 + π^0
p + d \rightarrow ³He + π^+ + π^-
d + d \rightarrow ⁴He + π^0 + π^0
d + d \rightarrow ⁴He + π^+ + π^-

Characters of d*(2380)

• d* mass locates between $\Delta\Delta$ and $\Delta N\pi$ thresholds Effect from threshold is expected small

 ${
m M_{\Delta\Delta}}=2464{
m MeV}$

d* narrow width —

Review article: by Heinz Clement,
Progress in Particle and Nuclear Physics,
11/14/20183 (2017), 195-142

Possible 6q structure might be different from normal hadrons

2. Possible interpretations

d*(2380)

Before COSY's observation

• Consists with COSY's measurement

```
Dyson(64) ----- symmetry analysis
Thomas(83) ---- bag model
Yuan(99) ----- \Delta\Delta + CC quark cluster model
         Jaffe(77)
         Swart(78)
          Oka(80)
       Maltman(85)
        Goldman(89)
        Wang(95).....
```

▲ After COSY's observation

Quark model

J.Ping (09/14)-10 coupled channels QM

F.Huang, Y.B.Dong et al. (14-18)--ΔΔ+CC QM

Bashkanov, Brodsky, Clement (13) -- ΔΔ+CC

A. Compact 6q dominated exotic state

Hadronic model

Gal (14) ---
$$\Delta N\pi$$

Kukulin(15,16) - $D_{12}\pi$

B. $\Delta N\pi$ (or $D_{12}\pi$) resonant state

3. Compact 6q dominated d* (2380) in a chiral constituent quark model

(A), Mass and wave function PRC 60 (1999) 045203 CPC 39 (2015) 071001

SU(3) chiral QM + RGM approach

Interactive Lagrangian

$$\mathcal{L}_{I} = -g_{ch}\bar{\Psi}\left(\sum_{a=0}^{8} \sigma_{a}\lambda_{a} + i\sum_{a=0}^{8} \pi_{a}\lambda_{a}\gamma_{5}\right)\Psi$$

<code>Model</code> parameters: reproduce experimental data for NN systems---NN phase shifts, ${
m BE}_d^{exp't}=2.22\,{
m MeV}$

▲ Trial wavefunction:

$$\mathbf{I}(\mathbf{J^P}) = \mathbf{0}(\mathbf{3^+})$$

$$\Psi_{6q} = \mathcal{A} \left[\phi_{\Delta}(\xi_1, \xi_2) \, \phi_{\Delta}(\xi_4, \xi_5) \, \eta_{\Delta\Delta}(r) + \right.$$
$$\left. \phi_{C}(\xi_1, \xi_2) \, \phi_{C}(\xi_4, \xi_5) \, \eta_{CC}(r) \right]_{S=3, I=0, C=(00)}.$$

$$\Delta$$
: $(0s)^3 [3]_{orb}, S = 3/2, I = 3/2, C = (00),$

$$\Delta$$
: $(0s)^3 [3]_{\text{orb}}, S = 3/2, I = 3/2, C = (00),$
 C : $(0s)^3 [3]_{\text{orb}}, S = 3/2, I = 1/2, C = (11),$

 $\eta_{\Delta\Delta}$ (r) and η_{CC} (r) are not orthogonal

▲ Hadronization----Channel wave function:

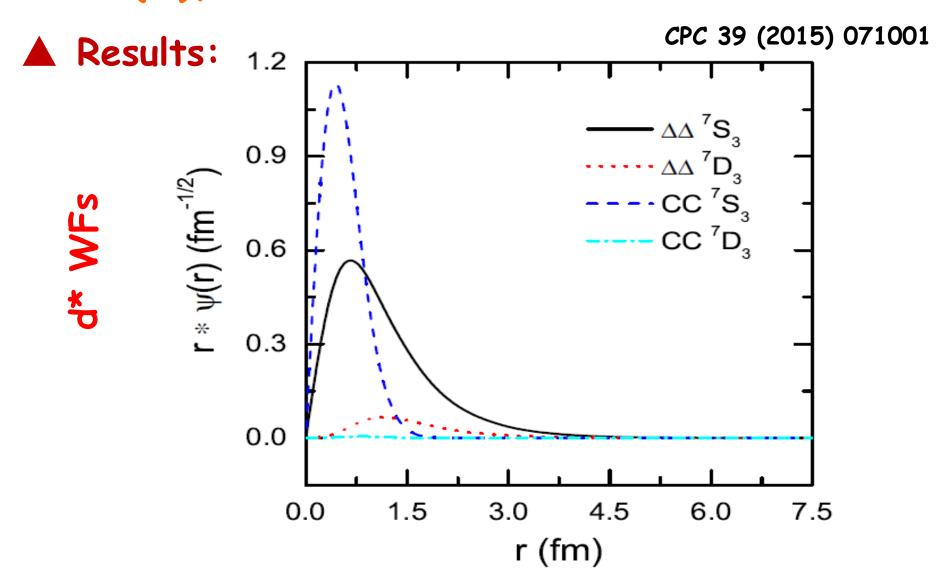
Using the projection method to integrate out the internal coordinates inside the clusters (or Hadronization approach)

$$\Psi_{d^*} = |\Delta\Delta\rangle \chi_{\Delta\Delta}(r) + |\text{CC}\rangle \chi_{\text{CC}}(r)$$

$$\chi_{\Delta\Delta}(\mathbf{r}) \equiv \langle \phi_{\Delta}(\boldsymbol{\xi}_1, \boldsymbol{\xi}_2) \, \phi_{\Delta}(\boldsymbol{\xi}_4, \boldsymbol{\xi}_5) \, | \, \Psi_{6q} \rangle \,,$$
$$\chi_{\mathrm{CC}}(\mathbf{r}) \equiv \langle \phi_{\mathrm{C}}(\boldsymbol{\xi}_1, \boldsymbol{\xi}_2) \, \phi_{\mathrm{C}}(\boldsymbol{\xi}_4, \boldsymbol{\xi}_5) \, | \, \Psi_{6q} \rangle \,,$$

The two components are orthogonal due to the quark exchange effect

(A), Mass and wave function



• Binding energy

$$\begin{array}{ll} \mathbf{BE_{d^*}^{th}} = 84\mathbf{MeV} & \quad \mathbf{BE_{d^*}^{exp't}} = 84\mathbf{MeV} \end{array}$$

		Ext. SU(3) (f/g=0)	
		ΔΔ	ΔΔ-CC
d* Binding Energy(MeV)		(L=0,2) 62.3	(L=0,2)
Fraction of Wave Function (%)	ΔΔ (L=0)	98.01	31.22
	ΔΔ (L=2)	1.99	0.45
	CC (L=0)	0	68.33
	CC (L=2)	0	0.00

Reason for the large component of CC (68%)

$$P_{36} = P_{36}^{r} P_{36}^{sfe}$$

$$\mathbf{I}(\mathbf{J^P}) = \mathbf{0}(\mathbf{3^+})$$

- 1). Intrinsic character of d* ---- <P₃₆^{sfc} > quark exchange effect of sfc large (negative:-4/9)
- 2). Dynamical effect----

(SI=30) , OGE and vector meson exchange induced $\Delta\text{-}\Delta$ short range interaction is attractive

Two cluster closer —— large CC component

d* deep bound and narrow width

d* might be a 6q dominant state!

(B), Strong decays

\triangle 2 π decay widths

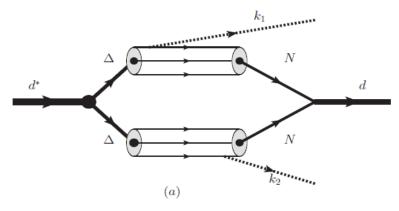
Three-body decay

$$d^* \to d\pi^0 \pi^0 \ (d\pi^+ \pi^-)$$
 $d^* \to pp\pi^- \pi^0$

Typical diagrams

Four-body decay

$$d^* \to np\pi^0\pi^0 \ (np\pi^+\pi^-)$$
$$d^* \to nn\pi^0\pi^+$$



Parameter:

 $qq\pi$

Interaction

$$\mathcal{H}_{qq\pi} = g_{qq\pi}\vec{\sigma} \cdot \vec{k}_{\pi}\tau \cdot \phi \frac{1}{(2\pi)^{3/2}\sqrt{2\omega_{\pi}}}$$

$$\Delta \to N\pi$$

$$\Delta \to N\pi$$
 Coupling & form factor $\Gamma_{\Delta \to \pi N} = \frac{4}{3\pi} k_\pi^3 (g_{qq\pi} I_o)^2 \frac{\omega_N}{M_\Delta}$,

	Theor.(MeV)	Expt.(MeV)
$d^* \to d\pi^+\pi^-$	16.8	16.7
$d^* \to d\pi^0 \pi^0$	9.2	10.2
$d^* \to pn\pi^+\pi^-$	20.6	21.8
$d^* \to pn\pi^0\pi^0$	9.6	8.7
$d^* \to pp\pi^0\pi^-$	3.5	4.4
$d^* \to nn\pi^0\pi^+$	3.5	4.4
$d^* \to pn$	8.7	8.7
Total	71.9	74.9

Discussions:

- * FSI is about 26~30%
- * Isospin breaking factor

$$\frac{\Gamma(d^* \to d\pi^+\pi^-)}{\Gamma(d^* \to d\pi^0\pi^0)} \sim 1.8 \quad (1.6, \quad 2.0)$$

$$\frac{\Gamma(d^* \to pn\pi^+\pi^-)}{\Gamma(d^* \to pn\pi^0\pi^0)} \sim 2.2 \quad (2.5, \quad 2.5)$$

* Too large width for $(\Delta\Delta)$ component only

$M_{d\bullet}({ m MeV})$	$(100\%)\Delta\Delta$ 2374	Expt 2375
Decay channel	Γ(MeV)	Γ(MeV)
$d^* \rightarrow d\pi^0\pi^0$	17.0	10.2
$d^* \rightarrow d\pi^+\pi^-$	30.8	16.7
Total	132.8	74.9

* All partial and total widths agree with data

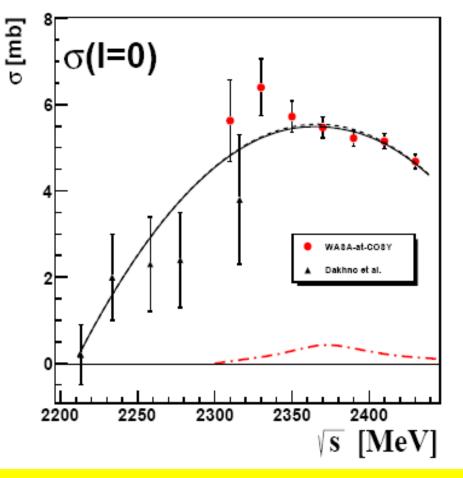
$$\Gamma^{exp't} = 70 \sim 75 \, MeV$$

$$\Gamma^{th} \approx 72 \, MeV$$

The narrow width is due to large CC component

\triangle Single- π decay

$$\sigma_{NN\to NN\pi}(I=0) = 3(2\sigma_{np\to pp\pi^-} - \sigma_{pp\to pp\pi^0})$$



Experimental status

The WASA-@-COSY

Collaborations,
arXiv:1702.07212v1 [nucl-ex]

PLB774 (2017), 599-607

Dash-dotted line illustrates a 10% d* resonance contribution

Upper limit of branching ratio for $d^*(2380) \to NN\pi$ is 9%.

This channel might serve as a test

PLB769 (2017) 223-226

compact 6q dominated case:

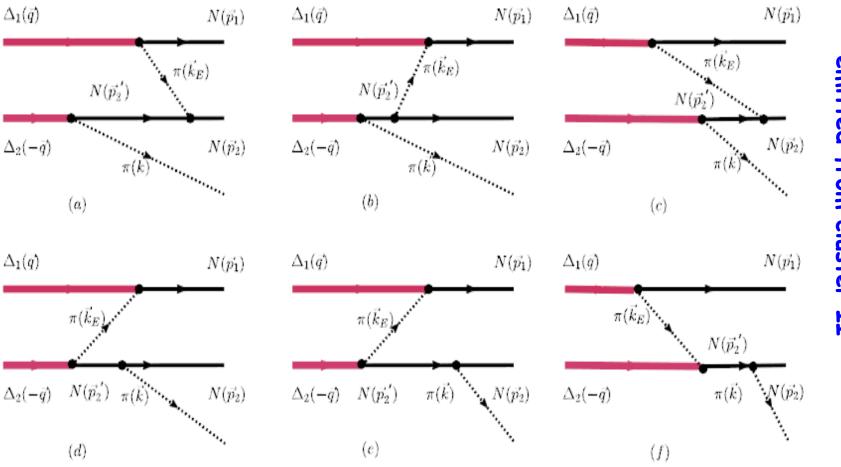
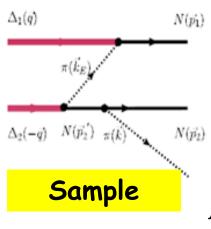


Fig. 1. Six possible ways to emit pion only from the $\Delta\Delta$ component of d^* in the $d^* \to NN\pi$ decay process. The outgoing pion with momenta \vec{k} is emitted from Δ_2 . The other six sub-diagrams with pion emitted from Δ_1 are similar, and then are not shown here for reducing the size of the figure.

Typical diagrams: pion emitted from cluster II



$$\Psi_{d^*} = |\Delta\Delta\rangle \chi_{\Delta\Delta}(r) + |CC\rangle \chi_{CC}(r)$$

$$\Delta$$
: $(0s)^3 [3]_{\text{orb}}, S = 3/2, I = 3/2, C = (00),$
 C : $(0s)^3 [3]_{\text{orb}}, S = 3/2, I = 1/2, C = (11),$

C:
$$(0s)^3 [3]_{orb}, S = 3/2, I = 1/2, C = (11),$$

 $L = L_{\pi NN} + L_{\Delta N\pi}$ Intermediate states: (N,N*, Δ , Δ *)
Low-lying resonances need to be considered

From quark model

$$\frac{g_{\pi\Delta\Delta}^2}{4\pi} = \frac{1}{25} \frac{M_\Delta^2}{M_N^2} \frac{g_{\pi NN}^2}{4\pi}, \quad g_{\pi\Delta\Delta} \quad small$$

- 1, $C \rightarrow \Delta$, interaction should be color and isospin-dependent
- 2, CC(SI=3,0)-NN*(1400), D-wave of OGE is required

The suppressions enable to ignore the contribution from the CC component in d*

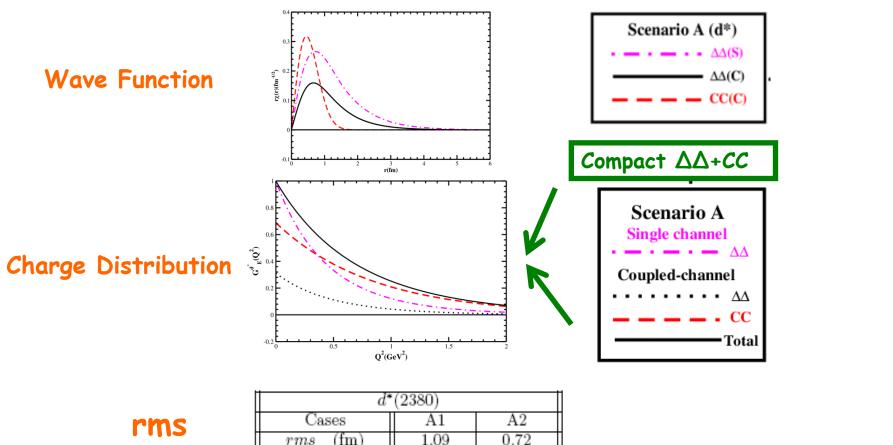
Our prediction, 1% is compatible with the Exp't upper-limits

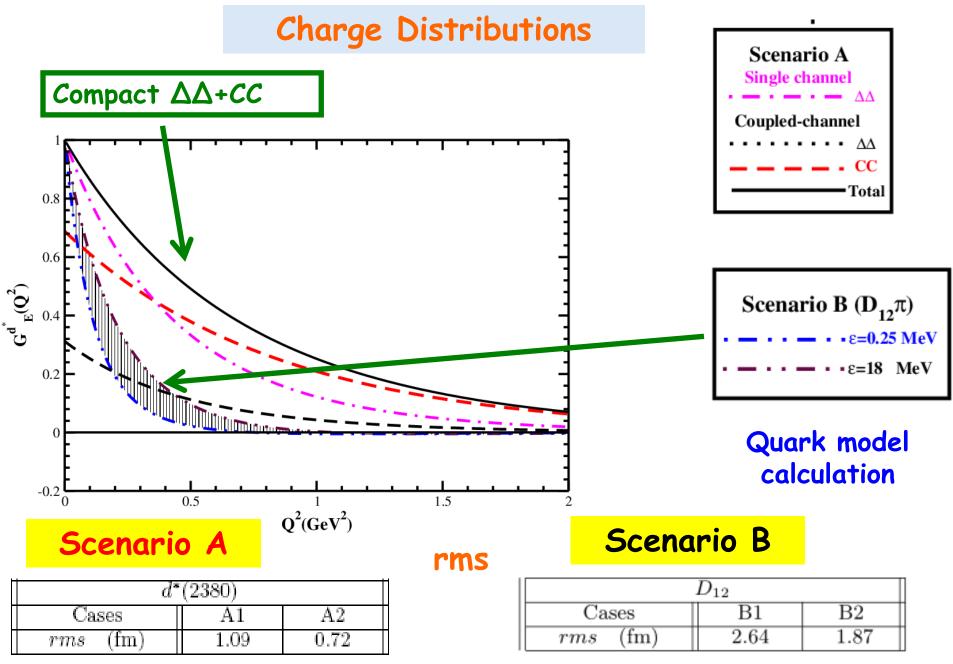
(C), Charge distribution of d*(2380)

For a spin=3 system:

PRD96 094001 (2017)

25+1=7 form factors (related to the size of system)





4. Summary, Remarks, and outlook

d*: Hexaquark dominated state:

(CC component ~ 66-68% in $\Delta\Delta$ +CC)

Compact 6q dominated

 $\Delta N\pi$ (or $D_{12}\pi$) system

A.Gal, PLB769 (2017) 436

Mass Double-pion strong decays

d*(2380) single- π decay Exp't BR \leq 9%

 $d^*(2380) \to NN\pi$

the BR for $\Delta N\pi$ (or $D_{12}\pi$) is large

in the mixing case

11/14/2018

Suggest other experimental searches

$$oldsymbol{\cdot} \gamma + d$$
 Process (Mainz, Jlab.)
$$oldsymbol{\cdot} \Upsilon o ar{d}^* + X$$
 Process (Belle)
$$oldsymbol{\cdot} \mathsf{BR}(\Upsilon o ar{d} + X) \sim 2.86 \ \mathsf{X} \ 10^{-5} \ \mathsf{Mainz}$$

$$oldsymbol{\cdot} e^+ + e^- o ar{d}^* + p + n$$
 Processes
$$oldsymbol{\cdot} \mathsf{Processes}$$

$$\mathsf{Processes}$$

$$\mathsf{Processes}$$

$$\mathsf{Processes}$$

If the d* is further confirmed by experiments, Our interpretation looks reasonable. Thus, it might be a state with 6q structure dominant and moreover, the more information about the short range interaction is expected.

Thanks!

11/14/2018

BACKUP SLICES

11/14/2018 26

Analysis: Large component of CC (67%) in d*?

 χ_{CC} contains the contri. From (2), from $\Delta\Delta$ exchanged terms.

Thus P₃₆ Exchange is important!

$$P_{36} = P_{36}^{r} P_{36}^{sfc}$$

 d^* has $\Delta\Delta$ and CC components

Before the discovery of d*

• A pioneer discussion from symmetry: J. Dyson, PRL 13, 815 (1964)

Two baryon systems SU(6) classification:

Anti-symmetric representations:
Non-strange states

(I, J) = (3,0)(2,1)(1,0)(1,2)(0,1)(0,3) 6 states

Casmir operator reduced a mass formula

$$M = A + B' (T(T+1)) + B'' (J(J+1))$$

If B' = B'' = B, the obtained deuteron mass 1876MeV, and then, obtain A_{γ}

Choose B = 50MeV, Then, M_{d*} = 2376MeV

 $<\!\!P_{36}^{sfc}\!\!>$ exchange effect in spin-flavor-color spaces

Reason for the large component of CC (67%)

$$P_{36} = P_{36}^{r} P_{36}^{sfc}$$
 if it large

< $P_{36}^{r}>\sim 1$ should also large

 $<\!\!\mathbf{P}_{36}^{\mathrm{r}}\!\!>$ is determined by the dynamical wave function

For d^* The effective Δ - Δ interaction induced by OGE and vector meson exchange enables the short range interaction attractive.

- Two clusters $\Delta\Delta$ closer, $\langle P_{36}^r \rangle$ is not small 1). d* special characters
- spin-flavor-color spaces exchange effect : model independent
 - 2). $\Delta\Delta$ (SI=30), Δ - Δ short range interaction is attractive

Dynamical effect — Model dependent

P₃₆ Effect large, large CC componet

d* might be a 6q dominant state

d* deep bounded and narrow width

11/14/2018

A. Compact 6q dominated exotic state

(a) In 1999, proposed d* with $\Delta\Delta+CC$ structure

X.Q.Yuan, Z.Y.Zhang, Y.W.Yu, P.N.Shen, PRC 60 (1999) 045203

- ► d* binding energy: 40-80 MeV
- CC enhances binding energy by 20 MeV
- (b) In 2013, proposed narrow d* width due to Harvey formula $|\Psi_{d^*}\rangle = \sqrt{\frac{1}{5}}|\Delta\Delta\rangle + \sqrt{\frac{4}{5}}|6Q\rangle$

Bashkanov, Brodsky, H. Clement, Phys. Lett. B727 (2013) 438

(c) In 2014, gave CC fraction of 68% in $d^*(\Delta\Delta + CC)$

F. Huang, Z.Y. Zhang, P.N. Shen, W.L. Wang, CPC 39 (2015) 071001

Decay widths

Three-body decay

$$\begin{split} \Gamma_{d^{\bullet} \to d\pi^{0}\pi^{0}} &= \frac{1}{2!} \int d^{3}k_{1}d^{3}k_{2}d^{3}p_{d}(2\pi)\delta^{3}(\vec{k}_{1} + \vec{k}_{2} + \vec{p}_{d}) \\ &\times \delta \left(\omega_{k_{1}} + \omega_{k_{2}} + E_{p_{d}} - M_{d^{\bullet}}\right) \left| \overline{\mathcal{M}}_{if}^{\pi^{0}\pi^{0}} \right|^{2} \end{split}$$

$$\begin{split} \mathcal{M}_{if}^{\pi^0\pi^0} &= \frac{1}{\sqrt{3}} \sum F_1 F_2 k_{1,\mu} k_{2,\nu} I_S^0 I_I^0 C_{1\nu,1\mu}^{jm_j} C_{3m_{d^*},jm_j}^{1m_d} \\ &\times \int d^3 q \left[\frac{\chi_d^* (\vec{q} - \frac{1}{2} \vec{k}_{12})}{E_{\Delta}(q) - E_N(q - k_1) - \omega_1} \right. \\ &+ \frac{\chi_d^* (\vec{q} + \frac{1}{2} \vec{k}_{12})}{E_{\Delta}(q) - E_N(q - k_2) - \omega_2} \\ &+ \frac{\chi_d^* (\vec{q} + \frac{1}{2} \vec{k}_{12})}{E_{\Delta}(-q) - E_N(-q - k_1) - \omega_1} \\ &+ \frac{\chi_d^* (\vec{q} - \frac{1}{2} \vec{k}_{12})}{E_{\Delta}(-q) - E_N(-q - k_2) - \omega_2} \right] \chi_{d^*} (\vec{q}) \end{split}$$

Four-body decay

$$\Gamma_{d^{\bullet} \to pn\pi^{0}\pi^{0}} = \frac{1}{2!2!} \int d^{3}k_{1}d^{3}k_{2}d^{3}p_{1}(2\pi)\delta(\Delta E) \times |\overline{\mathcal{M}(k_{1},k_{2};p_{1})}|^{2}$$

$$\mathcal{M}(k_1, k_2; p_1) = \mathcal{M}^{\text{bare}}(k_1, k_2; p_1) \times \mathcal{I}$$

$$\mathcal{I} = \mathcal{J}^{-1}(k) = C(k^2) \frac{\sin \delta e^{i\delta}}{k}$$

$$\begin{split} \mathcal{M}^{a}(k_{1},k_{2};\,p_{1}) &= \int d^{3}p_{2}d^{3}q\,[\mathcal{H}\mathcal{S}_{f}\mathcal{H}]\Psi_{d^{*}}(q) \\ &\times \delta^{3}(\vec{p}_{1}+\vec{k}_{1}-\vec{q})\delta(\vec{p}_{2}+\vec{k}_{2}+\vec{q}) \\ &= \int d^{3}p_{2}\delta^{3}(\vec{p}_{1}+\vec{p}_{2}+\vec{k}_{1}+\vec{k}_{2})[\mathcal{H}\mathcal{S}_{f}\mathcal{H}] \\ &\times \Psi_{d^{*}}(-\vec{p}_{2}-\vec{k}_{2}) \end{split}$$

 $d^* \to np\pi^0\pi^0 \ (np\pi^+\pi^-)$

Magnetic Moment

Naïve quark model

Nucleon
$$\frac{\mu_p}{\mu_n} = -\frac{3}{2} \rightarrow -\frac{2.79}{1.91_{EXPT.}}$$

$$\mu_{n} = \frac{1.91_{EXPT}}{1.91_{EXPT}}$$

$$d^{*}(2380) \qquad \Delta \Delta + CC \qquad \mu_{d^{*}} = \frac{M_{d^{*}}}{m_{q}} \approx 7.6$$

d*(2380)
$$D_{12}\pi \qquad \mu_{d^*} = \frac{2M_{d^*}}{3m_q} \approx 5.1$$

(C), Form factors

Form factors: 25+1 relative to size arXiv:1704.01253

Nucleon(1/2):
$$< N(p') \mid J_N^{\mu} \mid N(p) > = \bar{U}_N(p') \Big[F_1(Q^2) \gamma^{\mu} + i \frac{\sigma^{\mu\nu} q_{\nu}}{2M_N} F_2(Q^2) \Big] U(p),$$

$$G_E(Q^2) = F_1(Q^2) - \eta F_2(Q^2), \qquad G_M(Q^2) = F_1(Q^2) + F_2(Q^2),$$

Breit frame

$$< N(\vec{q}/2) \mid J_N^0 \mid N(-\vec{q}/2) > = (1+\eta)^{-1/2} \chi_{s'}^+ \chi_s G_E(Q^2)$$

$$< N(\vec{q}/2) \mid \vec{J}_N \mid N(-\vec{q}/2) > = (1+\eta)^{-1/2} \chi_{s'}^+ \frac{\vec{\sigma} \times \vec{q}}{2M_N} \chi_s G_M(Q^2).$$

Deuteron(1):

$$J^{\mu}_{jk}(p',p) = \epsilon_{j}^{'*\alpha}(p') S^{\mu}_{\alpha\beta} \epsilon_{k}^{\beta}(p)$$

$$S^{\mu}_{\alpha\beta} = -\left[G_1(Q^2)g_{\alpha\beta} - G_3(Q^2)\frac{Q_{\alpha}Q_{\beta}}{2m_D^2}\right]P^{\mu} - G_2(Q^2)(Q_{\alpha}g^{\mu}_{\beta} - Q_{\beta}g^{\mu}_{\alpha}) ,$$

$$G_C(Q^2) = G_1(Q^2) + \frac{2}{3}\eta_D G_2(Q^2) , \qquad G_M(Q^2) = G_2(Q^2) ,$$

$$G_O(Q^2) = G_1(Q^2) - G_2(Q^2) + (1 + \eta_D)G_3(Q^2) ,$$

Breit frame

$$G_C(Q^2)$$
 $\xrightarrow{\frac{1}{3}\sum_{\lambda} < p', \lambda \mid J^0 \mid p, \widetilde{\lambda} > .}$