Anomalies in $b \rightarrow sl^+l^-$ and $b \rightarrow c\tau \nu$ Recent results from LHCb

Rare B decays

- FCNC: Flavour Changing Neutral Current
- FCNC are strongly suppressed in the SM: only loops + GIM mechanism

Rare B decays

- FCNC are strongly suppressed in the SM: only loops + GIM mechanism
- Any new particle generating new diagrams can change the amplitudes

→ NP beyond the direct reach of the LHC

New particles can for example contribute to loop or tree level diagrams by enhancing/suppressing decay rates, introducing new sources of CP violation or modifying the angular distribution of the final-state particles

Indirect searches

Sensitive to New Physics effects

- When was the Z discovered?
 - \circ 1973 from N v → N v?
 - 1983 at SpS ?

c quark postulated by GIM, third family by KM

Estimate masses

 \circ t quark from BB mixing

Get phases of couplings

- Half of new parameters
- Needed for a full understanding

Look in lepton and **flavour** sectors

→ CP asymmetry in the Universe

indirect search: $K_L^0 \rightarrow \mu\mu$

 $K_L \rightarrow \mu^+ \mu^-$ decay can be generated by the box diagram:

in a renormalisable gauge theory, is expected to give a branching ratio of $\mathbf{g}^4 \sim \alpha^2 \sim \mathbf{10}^{-4}$, with α the fine structure constant.

 $K_L^0 \rightarrow \mu\mu$ was not observed though expected Now BF is measured to be $(6.84 \pm 0.11) \, 10^{-9}$

[Ambrose et al, 2000]

direct search: J/ψ → ee

→ c quark eventually observed in 1974 [Ting], [Richter]

With the measured charm quark mass $m_{\rm c} \sim 1.27~\text{GeV}$, the predicted rates are in agreement with observation.

LHCb is ...

- 1075 members, from 68 institutes in 17 countries (September 2014)
- Dedicated experiment for precision measurements of CP violation and rare decays
- Beautiful, charming, strange physics program

- pp collisions at $\sqrt{s} = 8(13)$ TeV in RunI (RunII)
- $b\bar{b}$ quark pairs produced correlated in the forward region
- Luminosity of $4 \times 10^{32} cm^{-2} s^{-1}$

LHCb

Tracking system

Measure displaced vertices and momentum of particles

Vertex and IP resolution

 $\sigma(IP) \sim 24 \mu \, m$ at $P_T = 2 \, GeV/c$ $\sigma_{BV} \sim 16 \mu \, m$ in x, y

Momentum resolution

 $\sigma(p)/p=0.4\%$ -0.6% for $p\in[0, 100]\,GeV/c$ $\sigma(m_B)\sim 24\,MeV$ for two body decays

LHCb

Particle identification

Distinguish between pions, kaons, protons, electrons and muons

Kaon identification

 $\varepsilon_{K}{\sim}95\,\%$, $\varepsilon_{\pi{ o}K}$ few %

Muon identification

$$\epsilon_{\mu}$$
=98%, $\epsilon_{\pi \rightarrow \mu}$ =0.6%

LHCb

Trigger system
Write out 5000 events/sec

Belle(II), LHCb side by side

Belle (II)

$$e^+e^- \rightarrow Y(4S) \rightarrow b\overline{b}$$

at Y(4S): 2 B's (B⁰ or B⁺) and nothing else ⇒ clean events

$$\sigma_{b\bar{b}} \sim 1 \text{ nb} \Rightarrow 1 \text{ fb}^{-1} \text{ produces } 10^6 \text{ B}\overline{\text{B}}$$
 $\sigma_{b\bar{b}}/\sigma_{\text{total}} \sim 1/4$

(in the context of B anomalies)

production of B^+ , B^0 , B_s , B_c , Λ_h ...

but also a lot of other particles in the event

⇒ lower reconstruction efficiencies

 $\sigma_{b\bar{b}}$ much higher than at the Y(4S)

	√s [GeV]	σ _{են} [nb]	σ _{bδ} / σ _{tot}
HERA pA	42 GeV	~30	~10-6
Tevatron	2 TeV	5000	~10-3
LHC	8 TeV	~3x10⁵	~ 5x10 ⁻³
	14 TeV	~6x10 ⁵	~10-2

b $\overline{\mathbf{b}}$ production cross-section ~ 5 \times Tevatron, ~ 500,000 \times BaBar/Belle!!

 $\sigma_{b\,\overline{b}}/\sigma_{total}$ much lower than at the Y(4S) \Rightarrow lower trigger efficiencies

mean decay length $\beta \gamma c \tau \sim 200 \mu m$

B mesons live relativey long

mean decay length $\beta \gamma c \tau \sim 7$ mm

data taking period(s)

 $[1999-2010] = 1 \text{ ab}^{-1}$

 $[\text{run I: } 2010 - 2012] = 3 \text{ fb}^{-1},$ [run II: 2015-2018] = $2 \text{ fb}^{-1} \rightarrow 8 \text{ fb}^{-1}$?

(near)|future

[Belle II from 2018] → 50 ab⁻¹

[LHCb upgrade from 2020]

$\mathbf{b} \rightarrow \mathbf{s} \mathbf{l}^{+} \mathbf{l}^{-}$

 \Rightarrow 2 orders of magnitude smaller than $b \rightarrow s \gamma$ but rich NP search potential

- electromagnetic penguin: C₇
- Amplitudes from vector electroweak:
 - axial-vector electroweak: C₁₀

may interfere w/contributions from NP

Many observables:

- Branching fractions
- Isospin asymmetry (A₁)
- Lepton forward-backward asymmetry (A_{FB})
- \Rightarrow Exclusive $(B \rightarrow K^{(*)}l^+l^-)$, Inclusive $(B \rightarrow X_s l^+l^-)$

Sensitivity to new physics in rare B decays

M.Ciuchini et al, arXiv:1512.07157 T.Hurth et al, arXiv:1603.00865

S.Descotes-Genon et al, arXiv:1510.04239...

NP changes short-distance C_i and/or add new long-distance ops O'_i

■ Model-independent description in effective field theory

$$\mathcal{H}_{\mathrm{eff}} = -rac{4G_F}{\sqrt{2}}V_{\mathrm{tb}}V_{\mathrm{ts}}^*\sum_i \mathcal{C}_i\mathcal{O}_i + \mathcal{C}_i'\mathcal{O}_i'$$

Left-handed Right-handed, $\frac{m_s}{m_b}$ suppressed

■ Wilson coefficients $C_i^{(\prime)}$ encode short-distance physics, $\mathcal{O}_i^{(\prime)}$ corr. operators

$B \rightarrow K^* l^+ l^- decays$

∘ Channels: $K^* \rightarrow K^+ \pi^-$, $K_S^0 \pi^+$, $K^+ \pi^0$, $l = e \text{ or } \mu$

[arXiv:0904.0770]

$$\left[\frac{3}{2}F_{L}\cos^{2}\theta_{K^{*}} + \frac{3}{4}(1 - F_{L})(1 - \cos^{2}\theta_{K^{*}})\right] \times \epsilon(\cos\theta_{K^{*}})$$

$$\left[\frac{3}{4}F_L(1-\cos^2\theta_{B\ell}) + \frac{3}{8}(1-F_L)(1+\cos^2\theta_{B\ell}) + A_{FB}\cos\theta_{B\ell}\right] \times \epsilon(\cos\theta_{B\ell}),$$

$$R_{K^*} = 0.83 \pm 0.17 \pm 0.08$$

 $R_{K} = 1.03 \pm 0.19 \pm 0.06$

Test of LFU with $B \rightarrow K^{*0} \mu \mu$ and $B \rightarrow K^{*0} ee$, $R_{K^{*0}}$

Two regions of q^2

- \circ Low [0.045-1.1] GeV²/c⁴
- \circ Central [1.1-6.0] GeV²/c⁴

Different q² regions probe different processes in the OPE framework short distance contributions described by Wilson coefficients

$$\mathcal{H}_{eff} = rac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* rac{lpha_e}{4\pi} \sum \left[C_i \mathcal{O}_i + C_i' \mathcal{O}_i'
ight]$$

- ∘ Measured relative to $B^0 \rightarrow K^{*0} J/\psi(ll)$ in order to reduce systematics
- Challenging:
 - due to significant differences in the way μ and e interact with detector
 - Bremsstrahlung
 - Trigger

Strategy

∘ Measured relative to $B^0 \rightarrow K^{*0} J/\psi(ll)$ in order to reduce systematics

$$\mathcal{R}_{K^{*0}} = \frac{\mathcal{B}(B^0 \to K^{*0} \mu^+ \mu^-)}{\mathcal{B}(B^0 \to K^{*0} J/\psi (\to \mu^+ \mu^-))} / \frac{\mathcal{B}(B^0 \to K^{*0} e^+ e^-)}{\mathcal{B}(B^0 \to K^{*0} J/\psi (\to e^+ e^-))}$$

Selection as similar as possible between μμ and ee

- » Pre-selection requirements on trigger and quality of the candidates
- » Cuts to remove the peaking backgrounds
- » Particle identification to further reduce the background
- » Multivariate classifier to reject the combinatorial background
- » Kinematic requirements to reduce the partially-reconstructed backgrounds
- » Multiple candidates randomly rejected (1-2%)

> Efficiencies

» Determined using simulation, but tuned using data

Strategy

∘ Measured relative to $B^0 \rightarrow K^{*0} J/\psi(ll)$ in order to reduce systematics

$$\mathcal{R}_{K^{*0}} = \frac{\mathcal{B}(B^0 \to K^{*0} \mu^+ \mu^-)}{\mathcal{B}(B^0 \to K^{*0} J/\psi \, (\to \mu^+ \mu^-))} \bigg/ \frac{\mathcal{B}(B^0 \to K^{*0} e^+ e^-)}{\mathcal{B}(B^0 \to K^{*0} J/\psi \, (\to e^+ e^-))}$$

- High occupancy of calorimeters (compared to muon stations)
- ⇒ hardware thresholds on electron E_T higher than on muon p_T (L0 Muon, $p_T > 1.5$, 1.8 GeV)

3 exclusive trigger categories:

- \circ L0 Electron: electron hardware trigger fired by clusters associated to at least one of the two electrons (E_T > 2.5 GeV)
- \circ L0 Hadron: hadron hardware trigger fired by clusters associated to at least one of the K^{*0} decay products ($E_T > 2.5 \text{ GeV}$)
- L0 TIS^(*): any hardware trigger fired by particles in the event not associated to the signal candidate

(*) TIS = Trigger Independent of Signal

Fit results – μμ

Fit results - ee

Yields

Precision of the measurement driven by the statistics of the electron samples

	$B^0\! o K^{*0}\ell^+\ell^-$		$B^0 ightarrow K^{*0} J/\psi (ightarrow \ell^+ \ell^-)$	
	$low-q^2$	central- q^2	$\mathbf{D} \to \mathbf{K} \mathbf{J}/\psi (\to \boldsymbol{\ell} \cdot \boldsymbol{\ell})$	
$\mu^+\mu^-$	$285 {}^{+}_{-} {}^{18}_{18}$	$353 {}^{+\ 21}_{-\ 21}$	$274416 \ ^{+}_{-} \ ^{602}_{654}$	
$e^{+}e^{-}$ (L0E)	55 ⁺ ⁹ ₈	67 + 10 10	43468 + 222	
e^+e^- (L0H)	13 + 5	19 + 6 5	$3388 {}^{+}_{-} {}^{62}_{61}$	
$e^{+}e^{-}$ (L0I)	21 + 5	$25 \buildrel + 7 \ 6$	$11505 \ ^{+}_{-} \ ^{115}_{114}$	

In total, about 90 and 110 $B^0\!\!\to\! ee$ candidates at low- and central- q^2 , respectively

Results

The measured values of $R_{K^{\ast 0}}$ are found to be in good agreement among the three trigger categories in both q^2 regions

Results

- The compatibility of the result in the low-q² with respect to the SM prediction(s) is of 2.2-2.4 standard deviations
- The compatibility of the result in the **central-q²** with respect to the SM prediction(s) is of **2.4-2.5** standard deviations

Test of lepton universality using $B^+ \rightarrow K^+ l^+ l^-$ decays

arXiv:1406.6482

 Ratio of branching fractions of B⁺→K⁺e⁺e⁻ and B⁺→K⁺μ⁺μ⁻ sensitive to lepton universality

$$R_K = \frac{\int_{q^2_{min}}^{q^2_{max}} \frac{d\Gamma[\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)]}{dq^2} dq^2}{\int_{q^2_{min}}^{q^2_{max}} \frac{d\Gamma[\mathcal{B}(B^+ \to K^+ e^+ e^-)]}{dq^2} dq^2} = \left(\frac{N_{K\mu\mu}}{N_{Kee}}\right) \left(\frac{N_{J/\psi(ee)K}}{N_{J/\psi(\mu\mu)K}}\right) \left(\frac{\varepsilon_{Kee}}{\varepsilon_{K\mu\mu}}\right) \left(\frac{\varepsilon_{J/\psi(ee)K}}{\varepsilon_{J/\psi(\mu\mu)K}}\right)$$

- SM prediction is $R_K = 1$ with an uncertainty of $O(10^{-3})$
- ∘ Measurement relative to resonant B → $J/\psi K$ modes

Test of lepton universality using $B^+ \rightarrow K^+ l^+ l^-$ decays

[arXiv:1406.6482]

 R_K : ratio of branching fractions for dilepton invariant mass squared range $1 < q^2 < 6 \text{GeV}^2/c^4$

• The combination of the various trigger channels gives:

$$R_{K} = 0.745^{+0.090}_{-0.074}(stat) \pm 0.036(syst)$$

- \circ Most precise measurement to date, disagreement with SM at 2.6σ level
- $\Rightarrow B(B^+ \rightarrow e^+ e^- K^+) = (1.56^{+0.19}_{-0.15}(stat) ^{+0.06}_{-0.05}(syst)) \times 10^{-0.05}$ compatible with SM predictions

LHCb

1.5 $R_{K}(SM) = 1$ [LHCb - PRL 113, 151601]

[BaBar - PRD 86 (2012) 032012]

[Belle - PRL 103 (2009) 171801] q^{2} [GeV²/ c^{4}]

——LHCb ——BaBar →—Belle

BSM LFNU and effect is in $\mu\mu$, not ee Looking forward for the coming measurement of R_{K^*} from LHCb!!

Test of lepton universality using $B^+ \rightarrow K^{(*)} l^+ l^-$ decays

Model candidates

Model with extended gauge symmetry

- ✓ Effective operator from Z' exchange
- ✓ Extra U(1) symmetry with flavor dependent charge

Models with leptoquarks

- ✓ Effective operator from LQ exchange
- ✓ Yukawa interaction with LQs provide flavor violation

♦ Models with loop induced effective operator

- ✓ With extended Higgs sector and/or vector like quarks/leptons
- ✓ Flavor violation from new Yukawa interactions

Differential Branching Fractions

Results consistently lower than SM predictions

 \circ Final state described by $q^2=m_{11}^2$ and three angles $\Omega=(\theta_1,\,\theta_K,\,\phi)$

$$\begin{split} \frac{1}{\mathrm{d}(\Gamma+\bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^3(\Gamma+\bar{\Gamma})}{\mathrm{d}\bar{\Omega}} &= \frac{9}{32\pi} \big[\frac{3}{4} (1-F_\mathrm{L}) \sin^2\theta_K + F_\mathrm{L} \cos^2\theta_K + \frac{1}{4} (1-F_\mathrm{L}) \sin^2\theta_K \cos 2\theta_\ell \\ &- F_\mathrm{L} \cos^2\theta_K \cos 2\theta_\ell + S_3 \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi \\ &+ S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi \\ &+ \frac{4}{3} A_\mathrm{FB} \sin^2\theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi \\ &+ S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2\theta_K \sin^2\theta_\ell \sin 2\phi \big] \end{split}$$

 \circ F_L, A_{FB}, S_i sensitive to C₇^('), C₉^('), C₁₀^(')

[arXiv:1512.04442]

- Projections of fit results for $q^2 \in [1.1, 6.0] \text{ GeV}^2$
- Good agreement of PDF projections with data in every bin of q²

[arXiv:1512.04442]

• Form-factor less dependent observables $P_5 = \frac{S_5}{\sqrt{F_L(1-F_L)}}$

[LHCb, arXiv:1512.04442]

- Tension in P₅ seen with 1 fb⁻¹ is confirmed
- ∘ Local deviations of 2.9σ and 3.0σ for $q^2 \in [4.0, 6.0]$ and [6.0, 8.0] GeV²
- $\circ~$ Naive combination of the two gives local significance of $3.7\,\sigma$

Form-factor less dependent observables $P_5' = \frac{S_5}{\sqrt{F_1(1-F_1)}}$ LHCb data ATLAS data Belle data CMS data 0.5 SM from DHMV SM from ASZB -0.510 15 $q^2 \, [\text{GeV}^2/c^4]$

[LHCb, arXiv:1512.04442]

- Tension in P₅ seen with 1 fb⁻¹ is confirmed
- ∘ Local deviations of 2.9σ and 3.0σ for $q^2 \in [4.0, 6.0]$ and [6.0, 8.0] GeV²
- \circ Naive combination of the two gives local significance of 3.7 σ
- \circ LHCb, Belle and ATLAS show deviations in $4 < q^2 < 8 \text{ GeV}^2/c^4$
- CMS shows better agreement

NP or hadronic effect?

Possible explanations for shift in C_9 :

- a potential new physics contribution C_9^{NP} enters amplitudes always with a charm-loop contribution $C_9^{c\bar{c}\,i}(q^2)$
- ⇒ spoiling an unambiguous interpretation of the fit result in terms of NP

NP e.g. Z', leptoquarks

hadronic charm loop contributions

Event reconstruction in $B \rightarrow D^{(*)} \tau \nu$ at B factories

2HDM (type II):
$$B(B \to D\tau^+\nu) = G_F^2 \tau_B |V_{cb}|^2 f(F_V, F_S, \frac{m_B^2}{m_{H^+}^2} tan^2 \beta)$$

uncertainties from form factors F_V and F_S can be studied with $B\!\to\!D\,l\nu$ (more form factors in $B\!\to\!D^*\tau\nu$)

Babar and Belle measurements hint to deviation from SM

BaBar (arXiv:1303.0571) observes a 3.4 σ excess over SM expectation ''This excess cannot be explained by a charged Higgs boson in the 2HDM type II ''

$\mathbf{B} \rightarrow \mathbf{D}^{(*)} \tau \nu \text{ at Belle}$

[arXiv:1507.03233]

projections for large M_{miss}^2 region , $N(D\tau\nu)\sim 300$, $N(D^*\tau\nu)\sim 500$ (with hadronic tagging)

$B \rightarrow D^{*+} \tau \nu \text{ at LHCb}$

[arXiv:1506.08614]

$$R(D^*) = \frac{\mathbf{B}\left(\overline{B}^0 \to D^{*+} \tau^- (\mu^- \overline{\nu}_\mu \nu_\tau) \overline{\nu}_\tau\right)}{B\left(\overline{B}^0 \to D^{*+} \mu^- \overline{\nu}_\mu\right)}$$

 $363,000 \pm 1,600$ events in $D^* \mu \nu$ sample $N(D^* \tau \nu)/N(D^* \mu \nu) = (4.54 \pm 0.46)\%$

(Fajfer et al 2012)

 $R(D^*) = 0.332 \pm 0.024 \pm 0.018$

$$R(D^*) = 0.293 \pm 0.038 \pm 0.015$$

[Belle, arXiv:1507.03233]

$$R(D^*) = 0.336 \pm 0.027 \pm 0.030$$

[disagreement with SM at 2.1σ]

[LHCb, arXiv:1506.08614]

Summary for $B \rightarrow D^{(*)} \tau \nu$

in 2016

$$\Rightarrow R(D^{(*)}) = \frac{BF(B \rightarrow D^{(*)} \tau \nu_{\tau})}{BF(B \rightarrow D^{(*)} l \nu_{l})}$$

BaBar

$$R(D) = 0.440 \pm 0.058 \pm 0.042$$

 $R(D^*) = 0.332 \pm 0.024 \pm 0.018$

Belle

$$R(D) = 0.375 \pm 0.064 \pm 0.026$$

 $R(D^*) = 0.293 \pm 0.038 \pm 0.015$

$$R(D^*) = 0.302 \pm 0.030 \pm 0.011$$

LHCb

$$R(D^*) = 0.336 \pm 0.027 \pm 0.030$$

average

$$R(D) = 0.397 \pm 0.040 \pm 0.028$$

 $R(D^*) = 0.316 \pm 0.016 \pm 0.010$

difference with SM predictions is at $\mathbf{4.0}\sigma$ level

$\mathbf{B} \rightarrow \mathbf{D}^* \tau \nu \text{ at Belle}$

D^(*) leptonic with hadronic tagging, arXiv:1507.03233 D* with leptonic tagging, arXiv:1607.07923

New result using:

- hadronic decays of $\tau^- \rightarrow \pi^- \nu_{\tau}$, $\rho^- \nu_{\tau}$
- hadronic tagging

 $\tau^- \to \pi^- \nu_\tau$, $\rho^- \nu_\tau$ are good polarimeter for τ polarization

$$P_{ au}(D^*) = rac{\Gamma^+ - \Gamma^-}{\Gamma^+ + \Gamma^-}$$

 $\Gamma^{+(-)}$ for right-(left-)handed au

$$P_{\tau}(D^*)_{\text{SM}} = -0.497 \pm 0.013$$

M. Tanaka and R. Watanabe,
Phys. Rev. D 87, 034028 (2013)

 $P_{\tau}(D^*)$ is modified

 θ_{hel} = angle of τ daughter meson momentum S = 0with respect to direction opposite to momentum of τv system in τ rest frame

$B \rightarrow D^{*+} \tau \nu \text{ at LHCb}$

need a strong background suppression:

$$B(B^0 \to D^* 3\pi + X)/B(B^0 \to D^* \tau \nu; \tau \to 3\pi)_{SM} \sim 100$$

⇒ detached vertex method

 $\tau \rightarrow 3\pi(\pi^0)$ [LHCb-PAPER-2017-017]

components of 3D fit $(q^2, 3\pi \text{ decay time, BDT})$:

$$\tau \rightarrow \pi^- \pi^+ \pi^- \nu_{\tau}, \pi^- \pi^+ \pi^- \pi^0 \nu_{\tau}$$
 $X_b \rightarrow D^{**} \tau \nu_{\tau}$
 $B \rightarrow D D_{s(J)} X$ (relative) ν

 $X_h \rightarrow DDX$

(relative) yields constrained from control samples

anti-D_s

$$B(B^0 \rightarrow D^* \tau \nu)/B(B^0 \rightarrow D^* 3\pi) = (1.93 \pm 0.13 \pm 0.17)$$

$$\Rightarrow$$
 R(D*) = 0.285 ± 0.019 ± 0.025 ± 0.014

R(D), $R(D^*)$ still at 4σ away from SM

$\mathbf{B} \to \mathbf{D}^{(*)} \tau \nu$

$$R(D^{(*)}) = \frac{BF(B \rightarrow D^{(*)} \tau \nu_{\tau})}{BF(B \rightarrow D^{(*)} l \nu_{l})}$$

 $R(D) = 0.407 \pm 0.039 \pm 0.024$ $R(D^*) = 0.304 \pm 0.013 \pm 0.007$ difference with SM predictions is at **4.1** σ level

$B_c \rightarrow J/\psi \tau \nu$

Summary

- \circ Using the full Run 1 data set the $R_{K^{*0}}$ ratio has been measured by LHCb with the best precision to date in two q^2 bins
- The compatibility of the result with respect to the SM prediction(s) is of 2.2-2.5 standard deviations in each q² bin
- $\circ~$ The result is particularly interesting given a similar behaviour in $\boldsymbol{R}_{\boldsymbol{K}}$
- Rare decays will largely benefit from the increase of energy (cross-section) and collected data (~5 fb⁻¹ expected in LHCb) in Run2
- LHCb has a wide programme of LU tests based on similar ratios
- Unexpectedly provide some of the most precise results for B \rightarrow D^{*} $\tau \nu$
- Many improvements and new results to come..

Outlook

- ∘ Few tantalizing results on rare decays in B sector covered in this talk... but much more in B decays: LFV searches, $B \rightarrow K^{(*)} \nu \overline{\nu}$, $B \rightarrow \tau \nu$, $\mu \nu$...
 - also in charm, charmonium, bottomonium, light Higgs, τ , DS, kaon sectors...
- Definitely not only complementary, but stimulating competition between (super) B-factories and LHCb (upgrade):
 - − for the expected: results on $B_{(s)} \rightarrow \mu \mu$, $B \rightarrow K^* \mu \mu$, $B_s \rightarrow J/\psi \phi$, γangle...
 - for the less expected: results on $|V_{ub}|$, $D^* \tau v$...

LHC era			HL-LHC era	
Run 1 (2010-12)	Run 2 (2015-18)	Run 3 (2020-22)	Run 4 (2025-28)	Run 5+ (2030+)
3 fb ⁻¹	8 fb ⁻¹	23 fb ⁻¹	46 fb ⁻¹	100 fb ⁻¹

$B_{(s)} \rightarrow \mu \mu$: ultra rare processes...

loop diagram + suppressed in SM + theoretically clean =
 an excellent place to look for new physics

higher-order FCNC allowed in SM

$$B(B_s \rightarrow \mu^+ \mu^-) = (3.65 \pm 0.23) \times 10^{-9}$$

 $B(B_d \rightarrow \mu^+ \mu^-) = (1.06 \pm 0.09) \times 10^{-10}$

[Bobeth et al, PRL 112 (2014) 101801]

same decay in theories extending the SM (some of NP scenarios may boost the B→μμ decay rates)

$B_{(s)} \rightarrow \mu \mu$: ultra rare processes...

$\mathbf{B}_{s} \rightarrow \mu^{+} \mu^{-} \mathbf{results}$

$$B(B_s^0 \rightarrow \mu^+ \mu^-) = (2.8^{+0.7}_{-0.6}) \times 10^{-9}$$

first observation: 6.2σ significance

$$B(B^0 \rightarrow \mu^+ \mu^-) = (3.9^{+1.6}_{-1.4}) \times 10^{-10}$$

first evidence: 3.0σ significance

SM: heavy state decays to $\mu^+\mu^$ first lifetime measurement: $\tau(B_s \rightarrow \mu^+\mu^\pm) = 2.04 \pm 0.44 \pm 0.05 \text{ ps}$

$$|P| = 1, |S| = 0, \varphi_P = 0 \qquad \varphi_S = \pi/2$$

$$|SM| \qquad \varphi_S = \pi/4 \qquad |S| = |P|$$

$$|SM| \qquad \varphi_S = \pi/4 \qquad |S| = |P|$$

$$|SM| \qquad \varphi_S = \pi/4 \qquad |S| = |P|$$

$$|SM| \qquad \varphi_S = \pi/4 \qquad |S| = |P|$$

$$|SM| \qquad \varphi_S = \pi/4 \qquad |S| = |P|$$

$$|SM| \qquad \varphi_S = \pi/4 \qquad |S| = |P|$$

$$|S| = 0 \qquad |S|, \varphi_S \text{ free}; |P| = 1; \varphi_P = 0$$

$$|P| = 1, |S| = 0 \qquad |P| = 1 \pm 10\%$$

$$|P| = 1, |S| = 0 \qquad |P| = 1 \pm 10\%$$

$$|P| = 1, |S| = 0 \qquad |P| = 1 \pm 10\%$$

$$|P| = 1, |S| = 0 \qquad |P| = 1 \pm 10\%$$

$$|P| = 1, |S| = 0 \qquad |P| = 1 \pm 10\%$$

$$|P| = 1, |S| = 0 \qquad |P| = 1 \pm 10\%$$

$$|P| = 1, |P| = 1, |P| = 1 \pm 10\%$$

$$|P| = 1, |P| = 1, |P| = 1, |P| = 1 \pm 10\%$$

$$|P| = 1, |P| = 1$$

$$\begin{split} &B(B_s^0\!\!\to\!\!\mu^+\mu^-) = (3.0\,\pm 0.6\,^{+0.3}_{-0.2})\!\!\times\!10^{-9}\,(7.8\,\sigma\;significance)\\ &B(B^0\!\!\to\!\!\mu^+\mu^-) < 3.4\,\!\times\!10^{-10}\;@\;90\,\%\,CL \end{split}$$

Cross-checks

> Control of the absolute scale of the efficiencies via the ratio

$$r_{J/\psi} = \frac{\mathcal{B}(B^0 \to K^{*0}J/\psi (\to \mu^+\mu^-))}{\mathcal{B}(B^0 \to K^{*0}J/\psi (\to e^+e^-))}$$

which is expected to be unity and measured to be

$$1.043 \pm 0.006 \, (\mathrm{stat}) \pm 0.045 \, (\mathrm{syst})$$

- Result observed to be reasonably flat as a function of the decay kinematics and event multiplicity
- Extremely stringent test, which does not benefit from the cancellation of the experimental systematics provided by the double ratio

> Relative population of **bremsstrahlung categories** compared between data and simulation using $B^0 \rightarrow K^{*0}J/\psi(ee)$ and $B^0 \rightarrow K^{*0}\gamma(ee)$ events

NP or hadronic effect?

Bin-by-bin fit of the one-parameter scenario with a single coefficient C_9^{NP}

C₉^{NP} doesn't depend on q²,

 $C_9^{c\bar{c}\,i}(q^2)$ expected to exhibit a non-trivial q^2 dependence

⇒ definitely need more stat.

Angular analysis of $B_d^0 \rightarrow K^* e^+ e^-$ decays

[arXiv:1501.03038]

- Measurements well in agreement with SM predictions
- Constraints on C₇ in complementary with radiative decays

Angular analysis of $B_d^0 \rightarrow K^* e^+ e^-$ decays

[arXiv:1501.03038]

- ∘ Angular analysis of $B_d^0 \rightarrow K^* e^+ e^-$ at very low q^2 (∈ [0.002, 1.120] GeV^2)
- ∘ Folded angular observables $(\phi = \phi + \pi \text{ if } \phi < 0)$
- ∘ Measurement of F_L , $A_T^{(2)}$, $A_T^{(Im)}$, $A_T^{(Re)}$, sensitive to C_7 as $q^2 \rightarrow 0$

$$A_T^{(Re)} = \frac{4}{3} A_{FB} / (1 - F_L), \quad A_T^{(2)} = \frac{1}{2} S_3 / (1 - F_L) \text{ and } A_T = \frac{1}{2} S_9 / (1 - F_L)$$

The LHCb / LHCb upgrade timeline

LHCb future (2012 + end 2014 - 2017)

- $\mathcal{L} \ge 4 * 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$
- L_{int} > 8 fb⁻¹ by the end of 2017
 → Factor-4 in statiscal power wrt 1 fb⁻¹

Upgraded LHCb (2019 -)

- Full readout @ 40 MHz with full software trigger → trigger efficiency enhanced by a factor-2 for hadronic modes!
- Increase the luminosity by a factor-5

$$ightarrow \mathcal{L} \geq (1-2)*10^{33} \ {
m cm}^{-2} \, {
m s}^{-1}$$

- ightarrow 25 ns bunch spacing ightarrow $\mu=2$
- $\rightarrow \sqrt{s} = 13-14 \text{ TeV}$
- $\rightarrow +100\% \ b\bar{b}$ x-section wrt $\sqrt{s}=7$ TeV
- $ightarrow \geq 5 \; \mathrm{fb^{-1}/year}$
- Run for 10 years
 - \rightarrow L_{int} > 50 fb⁻¹
 - \rightarrow > Factor-10 in stat. power wrt 1 fb⁻¹

2010	$0.04 \text{ fb}^{-1} @ \sqrt{s} = 7 \text{ TeV}$
2011	1.1 fb ⁻¹ @ $\sqrt{s} = 7 \text{ TeV}$
2012	2.2 fb -1 @ $\sqrt{s} = 8$ TeV
2013	LS1: LHC slice repair
2014	
2015	> 5 fb ⁻¹
2016	@ $\sqrt{s} = 13 - 14 \text{ TeV}$
2017	25ns bunch spacing
2018	LS2: LHCb upgrade
2019	> 5 fb ⁻¹ /year
2020	
2021	@ $\sqrt{s} = 13 - 14 \text{ TeV}$
2022	
2023	
2024	ļ
ţ	

LHCb

$\mathbf{B} \to \mathbf{D}^{(*)} \tau \nu$

$$R(D^{(*)}) = \frac{BF(B \rightarrow D^{(*)} \tau \nu_{\tau})}{BF(B \rightarrow D^{(*)} l \nu_{l})}$$

BaBar

$$R(D) = 0.440 \pm 0.058 \pm 0.042$$

 $R(D^*) = 0.332 \pm 0.024 \pm 0.018$

Belle

$$R(D) = 0.375 \pm 0.064 \pm 0.026$$

 $R(D^*) = 0.293 \pm 0.038 \pm 0.015$

$$R(D^*) = 0.302 \pm 0.030 \pm 0.011$$

$$\mathbf{R}(\mathbf{D}^*) = \mathbf{0.276} \pm \mathbf{0.034}^{+0.029}_{-0.026}$$

LHCb

$$R(D^*) = 0.336 \pm 0.027 \pm 0.030$$

$$R(D^*) = 0.285 \pm 0.019 \pm 0.029$$

<u>average</u>

$$R(D) = 0.407 \pm 0.039 \pm 0.024$$

 $R(D^*) = 0.304 \pm 0.013 \pm 0.007$

difference with SM predictions is at 4.1σ level

