An Update on Supersymmetric String Landscape

KEK-PH 2018 Workshop, 2018 Feb. 16 Taizan Watari (Kavli IPMU, Tokyo)

anything to learn about particle physics from string theory?

- Enhanced rate of proton decay.
- RH neutrino mass somewhat below the GUT scale.
- Electron mass not larger than Planck scale.

- Landscape (ensemble) of meta-stable vacua
 - Eternal inflation prior to slow-roll inflation
 - Ensembles subject to selection
 - Theoretical foundation to "naturalness" ???

Friedman Witten '02

Tatar Tsuchiya TW '09

early 00's ~

From the perspectives of string theorists...

- Studying string landscape:
 - just an intellectual curiosity. (like geography, zoology, etc)
 - typical greetings: "hello" and "Ni-hao"
 - tallest man on earth <= 2.5m

- use the statistics for the basis of naturalness
 - based on String Theory after 90's
- probe into where the "String Theory after 90's" fails badly.

Study F-theory SUSY vacua

• up-type Yukawa in SU(5) GUT Tatar TW '06

• powerful machinery alg. geom.

• Fix a topology of the internal 6D mfd.

• Flux introduces 10^{500} vacua.

• gravitino mass: $\propto dm_{3/2} m_{3/2}$.

D=4 N=1 SUSY String Landscape Het

• In Type IIB: also distrib. formula $10^{500} \det [R+\omega]$. Ashok Douglas '03, Denef Douglas '04

Not understood in 00's: how gauge group (brane config) is determined

Virtually no question of practical interest can be asked back then.

Fix a topology of the internal 6dim. manifold.

• F-theory version of the Ashok-Denef-Douglas formula:

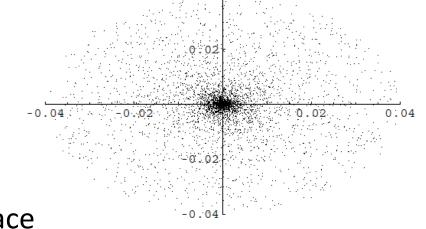
Denef '08 Braun Kimura TW '14, Braun TW '14

$$e^{(2+2h^{31}+h_H^{22})/6} \det[R+\omega] \approx e^{h^{31}} \det[R+\omega].$$
 Braun TW 14
$$h^{31} = \dim(\mathcal{M}).$$

• Lesson 1: #[flux vacua] $10^{100,000}$

record high $h^{31} \sim 3 \times 10^5$ Taylor Wang '15 (for one topology)

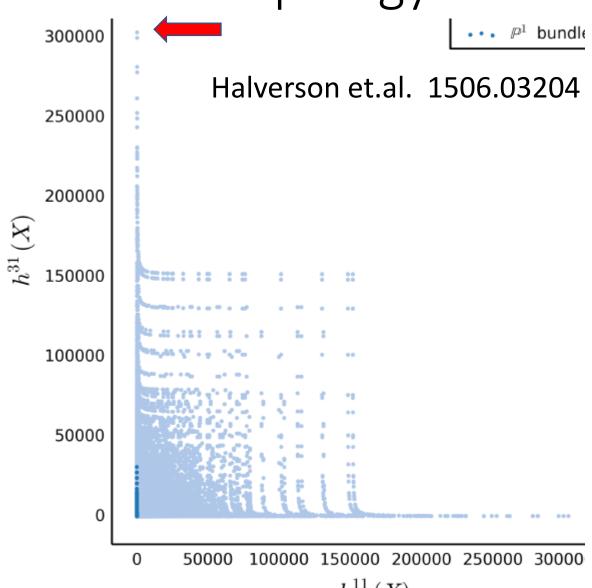
- Lesson 2: vacua w/ non-Abelian gauge group: VERY rare.
 - small value of dark energy $10^{-120}\,$ is not as serious a problem as this!
- Lesson 3: vacua w/ U(1) gauge group is MUCH MORE rare.


Braun TW '14,, TW '15

Fix a topology of the internal 6dim. manifold.

taken from Giryavets et.al. th/0404243

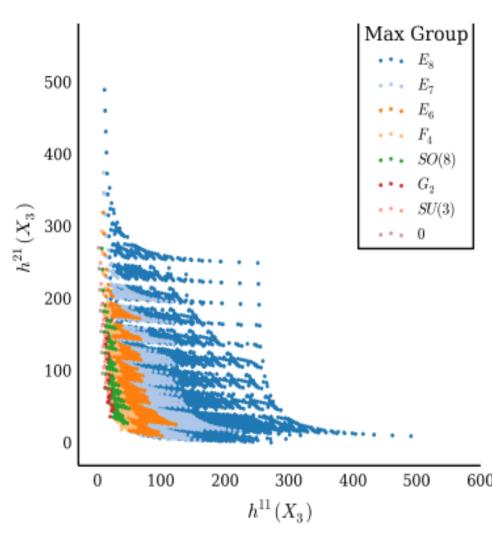
- distribution $\propto \det[R + \omega]$
 - accumulation locus (see) iff 4-cycles have logarithmic monodromy.


 Eguchi Tachikawa '06

- Lesson 4: U(1) symmetry breaking parameter: YES in codimension- (Δh^{31}) subspace
- Lesson 5: hierarchical Yukawa from localized wavefunctions: Arkani-Hamed Schmaltz '01
 - F-theory implementation: ${\rm Im}(\tau) \sim O(100)$ for localization. Hall Salem TW '07
 - turns out that $e^{2\pi i au}$ is the natural coordinates on the mod. space. Hayashi et.al. '09
 - unless there is log monodromy around $e^{2\pi i \tau} = 0$, the AS idea has no gain, in fact.

6dim. internal manifolds with diff. topology

• the zoo of internal manifolds


6dim. internal manifolds with diff. topology

Halverson et.al. 1506.03204

- the zoo of internal manifolds
- for many of them, there are unavoidable stacks of 7-branes ⇒ non-Abelian gauge grps
 - often in the form of product of non-Abelians.

- Unavoidable non-Abelinas relevant to us??
 - the MSSM has flat directions (deformat'n DOFs)

Summary

- 4D N=1 SUSY String Landscape being studied well using F-theory
 - tremendous number of flux vacua,
 - tremendous rarity of flux vacua with higher rank gauge group
 - techniques developed and available to study distribution of couplings in the effective theory
 - U(1) symmetry breaking parameter,
 - Yukawa hierarchy
 - often unavoidable stack of branes leading to product of non-Abelian gauge groups