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Introduction
L]

Compressed-mass-spectrum scenarios

Compressed-mass-spectrum scenarios:

o New BSM particles have masses within a small

mass gap and a stable BSM particle in their decay g x
chain AMAAAAAAAS
@ Remnent of new particle decay is hard to detect:
either soft (mass gap is too small) or invisible t
@ Less constrained scenario from direct observation h
of decay product of new particle — Wz
mass
g : soft
q : soft
p
%9 : missing, soft
% : missing, soft
p

q : soft
g : soft

Those soft signals are hard to observe because of other large QCD activity.
Still, there is a way to observe signals from this process at LHC.
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Monojet signature from compressed-mass-spectrum scearios

Comparing to SM processes, this BSM process
have more higher energy scale. Hence BSM
process can be more radiative and have more
chance of having a hard initial state radiation.

energy scale
,S mew
2 Mg

|
SM process |
BSM process !

A j @ hard, high pr jet

g : soft
q : soft

Xi : missing, recoiled

%9 : missing, recoiled

q : soft
g : soft

Therefore, whole system can be recoiled and there could be significant amount
of event with high pr jet 4+ missing transverse energy, i.e. monojet channel.
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What we could achieve from monojet study?

Monojet is a primitive channel but it is robust also. Possible achievements are:
@ New physics discovery: check SM background only hypothesis vs
background + BSM signal hypothesis
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Understanding background and signal uncertainty is important to push down
exclusion limit and discover new physics. If systematic error can be reduced
from 2.5% to 1%, we can access mass ~ 100 GeV more for new particle searchy / 18
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background + BSM signal hypothesis
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Since background is getting dominated by systematic error, increasing /s of pp
collision could help pushing limit further down.

4/18



Introduction
oe

What we could achieve from monojet study?

Monojet is a primitive channel but it is robust also. Possible achievements are:
@ New physics discovery: check SM background only hypothesis vs
background + BSM signal hypothesis
@ Properties of new particle: mass, spin and color?

sgluon (o)

scalar Fermion
J . J
“q_; // t P Tp
= 2
5 N
5 " 7
3 S P Tp
SUSsY stop () top partner (T,) 7
. P g
2
O
s
S .
8 P g

SUSY gluino (&)

However, to fully resolve this hypothesis, we need to understand signal and
background in high precision.
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Monojet cross section for new particle disambiguation

Monojet can be used for distinguishing new particle hypotheses also.
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Monojet cross section for new particle disambiguation

Monojet can be used for distinguishing new particle hypotheses also.

pp — HH + j fNLO, MG5
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Monojet cross section for new particle disambiguation
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In principle, we can distinguish BSM scenarios utilizing
@ Overall normalization difference from BSM particle degree of freedom
o Energy scale of monojet
o Additional model dependent kinematical factor

To gather these information effectively, we need precise signal modelling.
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Monte-Carlo study of Monojet
o

NLO Monte-Carlo simulations

For precise study of signals, we performed NLO QCD

Monte-Carlo simulations of 14 TeV pp collision with p T,
simplified models. To understand monojet behavior by

QCD order, we organized simulation as followings:

he]

Fixed parton multiplicity at Born level Tp
o Madgraph5_.aMC@NLO-+Pythia8: p T»
o pp— TpTp (NLO QCD)
o pp— TpTp +j (NLO QCD)
e pp— TpTp+2j (LO, MLM merged)
Multijet merged simulations
@ Sherpa: J

= p T,
o pp— TpTp+j (NLO QCD, MEPS@NLO merged) i

o pp— TpTo+2j (NLO QCD, MEPS@NLO merged)
Let's focus on Fermionic top partner case for discussion p Tp

of uncertainty.
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Monte-Carlo study of Monojet

L Je]

A quick monojet pt distribution check

We reconstruct event at hadron level (without
detector simulation) and check cross section of
signals for leading jet pr > p7 _,, QCD order by

order.
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Briefly comparing between MG5 and Sherpa...
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Monte-Carlo study of Monojet
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Comparsion between MG5 and Sherpa

V=14 Tev m; =600 GeV V=14 Tev TpTp+ in MG5+Pythiad and Sherpa
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Except pp — T, 7',, NLO+PS, all cross section agrees each other witin 5%.
However, their uncertainty is different each other.

Furthermore, MEPS@NLO merged sample in Sherpa and unmerged sample in
MG5 coincide each other after pt > 200GeV.

We can use simple MG5 setup for BSM monojet signature studies.
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Parton Shower and Monojet
L]

Shower and monojet

Since monojet signature is looking hard emission explicitly, it could be affected
by parton shower depending on your setup. To remove the parton shower
dependence, it's better to describe radiation using matrix element directly.

relevant diagrams to the leading jet
Born

Vitrual

pp— TpTp+j pp— TpTp

Real

FERE
s

Double-counting in pp — T, T, NLO+PS?
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Parton Shower and Monojet
L]

Shower and monojet

Since monojet signature is looking hard emission explicitly, it could be affected
by parton shower depending on your setup. To remove the parton shower
dependence, it's better to describe radiation using matrix element directly.

relevant diagrams to the leading jet

Born Vitrual

pp— TpTp+j pp— TpTp

Real

Rante
Sl el

J
MC@NLO [Frixione, Webber, hep-ph/0204244] solves double-counting between
Born and Real emission diagrams and removes PS dependence
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Parton Shower and Monojet
(]

Shower scale variation and monojet

Still, there is a shower dependence remaining in virtual emission, there remains
parton shower depenedence in pp — T, T, NLO+PS. To remove the parton
shower dependence, it's better to describe radiation using matrix element
directly rather than using paton shower with dampening profile.
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Scales and Monojet
L]

Scale uncertainty of finite order calculation

In a finite order perturbation theory, the observable we have calculated depends
on scale parameter used for regulating singularities, such as

@ Renormalization scale of couplings (as)
@ Factorization scale of PDF

As we considering more higher order calculation, the scale dependence reduces.
But we are doing finite order calculations, and hence, we need to estimate
uncertainty form this calculation.
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Scales and Monojet

Scale uncertainty estimation: order-counting

In a leading jet pr distribution, the scale uncertainty depends on QCD order
and parton multiplicity. For pp — T, T, NLO+PS,

relevant diagrams to the leading jet
Born Vitrual Real

D

In low pr regime, Born, virtual and real emission contribute. Hence, the pr
distribution is NLO+-PS precise.

pp— TpTp

rocess schematic uncertainty of monojet pr distribution
P low pr region ; high pr region

pp — TpTp NLO+PS NLO+PS 1
pp — TpTp + j NLO+PS !
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Scales and Monojet
(]

Scale uncertainty estimation: order-counting

In a leading jet pr distribution, the scale uncertainty depends on QCD order
and parton multiplicity. For pp — T, T, NLO+PS,

relevant diagrams to the leading jet
Born Vitrual Real

J

pp— TpTp

In high pr regime, only real emission contribute since PS cannot push Born
and virtual contribution here. Diagram is essentially pp — T, T, +j at LO,
hence, the pr distribution is LO+PS precise.

schematic uncertainty of monojet pr distribution
low pr region ; high pr region
pp — T, T, NLO+PS ‘ NLO+PS | LO+PS

pp — TpTp+j NLO+PS !

process
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Scales and Monojet

Scale uncertainty estimation: order-counting

In a leading jet pr distribution, the scale uncertainty depends on QCD order
and parton multiplicity.  For pp — T, T, +j NLO+PS,

relevant diagrams to the leading jet
Born Vitrual Real
= -
. . J
* J J
I~
"Q
T > >
g J

Born, virtual and real emission contribute everywhere. Hence, the pr
distribution is NLO+PS precise.

schematic uncertainty of monojet pr distribution
process S . .
low pr region high pr region
pp — TpTp NLO+PS NLO+PS 1 LO+PS
pp — Tp T, + j NLO+PS NLO+PS ‘ NLO-+PS
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Scales and Monojet
L]

Scale uncertainty and monojet

V=14 Tev T,T, in MG5+Pythia8 V=14 Tev T,Tp+j in MG5+Pythiag
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Uncertainty

process S .
low pr region  high pr region

pp — T T, + 2j LO+PS O(30 ~ 40%)

pp — T, T, NLO4PS O(10%) | O(40%)

pp — T, T, +j NLO+PS 0(10%)

Rescaling NLO into NNLO 0(5%)

Rescaling NLO cross section into NNLO can further reduce uncertainty by half.
Overall scale uncertainty can be under control near future.
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and Monojet
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PDF variation

There is one more additional uncertainty in PDF: PDF variation. Parton
distribution is basically fitted result of experimental data, and they have their
own fitting uncertainty.
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For moderate mass mr, = 600 GeV, v/3 > 1200 GeV, PDF variation is
moderate, < 10%. This error can be further reduced in future with more
experiments.
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nd Monojet
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Overall Uncertainty and Shape Uncertainty
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Other than overall normalization, PDF variation affect shape of the leading jet
prt distribution more than scale variation.

Pr o
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Summary
[

Summary

@ Monojet analysis is simple and robust channel for searching new physics
with compressed-mass-spectrum.

@ Each BSM hypotheses with compressed-mass-spectrum gives different
monojet signature, such as normalization and shape, so we can use them
for disntinguishing various BSM scenarios.

@ This monojet signatures are prone to uncertainty, and hence, we need to
use higher order correction to get better BSM scenario disambiguation.

@ Still some works are in progress, stay tuned!
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