Composite Dark Matter

Part	DM theory	Interest	Craziness
1	SM	!!!	???
2	SM + heavy Q	!!	??
3	SM + heavy Q + new force	!	?

Alessandro Strumia, Pisa U. & INFN & CERN From works with Antipin, deLuca, Mitridate, Redi, Smirnov, Vigiani. KEK-PH2018, 2018.2.14

Horizon 2020 European Union funding for Research & Innovation

European Research Council

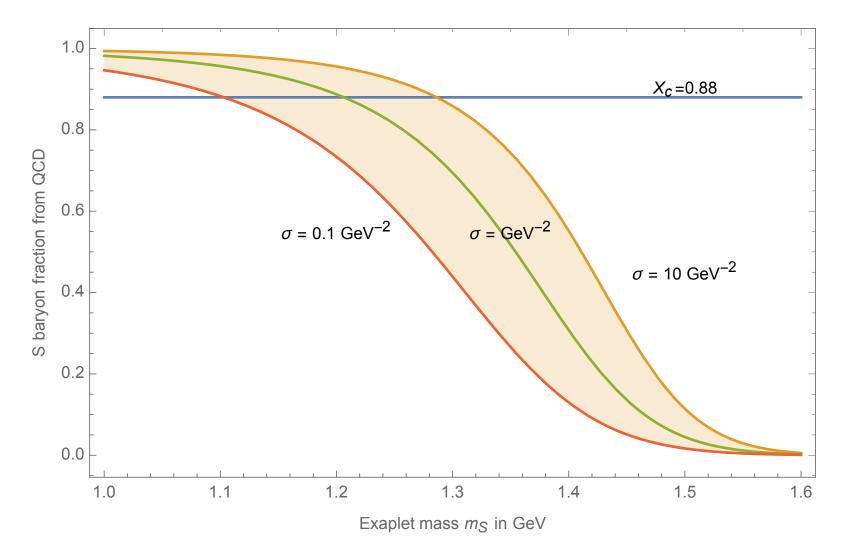
1) DM within the SM???

Jaffe: the spin 0 iso-singlet di-baryon S = uuddss should have a large binding.

Farrar: it could be stable DM if $E_B \gtrsim 2m_s$ such that $M_S < 2(M_p + M_e)$.

Thermal abundance

Interactions with strange hadrons (e.g. $\Lambda\Lambda \leftrightarrow SX$) keep S in thermal equilibrium until Λ get Boltzmann suppressed at $T \sim M_{\Lambda} - M_p$: $\Omega_S \sim 5\Omega_b$ for $M_S \approx 1.3$ GeV:



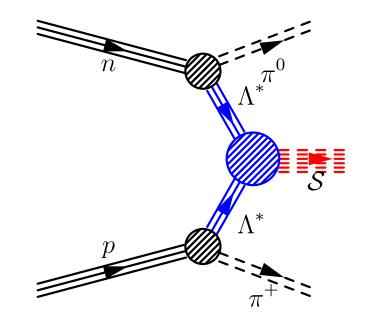
Nuclear decay

If stable, S makes nuclei unstable. Excluded by SuperKamiokande

 $\tau(O \rightarrow SX) > 10^{26-29} \,\mathrm{yr}$

where $X = \{\pi\pi, \pi, e, \gamma\}$. The decay dominantly proceeds trough double β production of virtual Λ^* .

Recent fits of nucleon potentials and O wave-function imply a too fast decay.



Excluded also by balloon direct detection, unless interactions reduce S speed.

2) Colored DM??

Uh? Everybody knows it's excluded

Theory

$$\mathscr{L} = \mathscr{L}_{\mathsf{SM}} + \bar{\mathcal{Q}}(i\not\!\!D - M_{\mathcal{Q}})\mathcal{Q}.$$

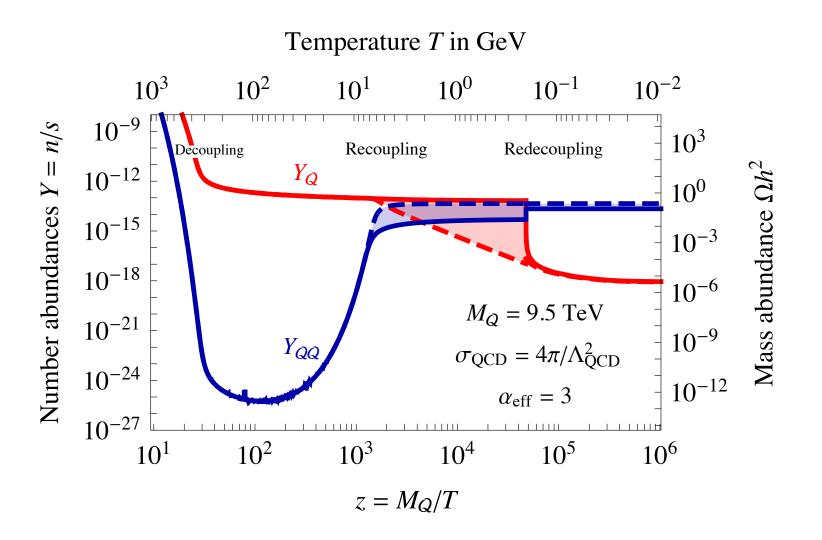
Q is a new colored particle. We assume a Dirac fermion octet with no weak interactions, no asymmetry. (Alternatives: a color triplet, a (3,2), a scalar...). Could be a Dirac gluino; could be a fermion of natural KSVZ axion models.

 $\Omega_Q h^2 \sim 0.1 M_Q / 7$ TeV before confinement. Later hadrons form:

- DM can be the Q-onlyum hadron QQ. It is the ground state: big binding $E_B \sim \alpha_3^2 M_Q \sim 200 \text{ GeV}$ and small radius $a \sim 1/\alpha_3 M_Q$, so small interactions.
- Hybrids Qg and/or $Qq\bar{q}'$ have small $E_B \sim \Lambda_{QCD}$ and large $\sigma \sim 1/\Lambda_{QCD}^2$. Excluded, unless their relic abundance is small.

Hybrids have zero relic abundance, if cosmology has infinite time to thermalise. A hybrid recombines $M_{\rm Pl}/\Lambda_{\rm QCD} \sim 10^{19}$ times in a Hubble time. Hadronizing with q, g is more likely, $n_{q,q} \sim 10^{14} n_Q$. Result: $n_{\rm hybrid} \sim 10^{-5} n_{\rm DM}$.

Cosmological evolution



1) Usual decoupling at $T \sim M_Q/25$, Sommerfeld and bound states included.

- 2) Recoupling at $T \gtrsim \Lambda_{QCD}$ because $\sigma_{bound} \sim 1/T^2$.
- 3) Hadronization at $T \sim \Lambda_{QCD}$ and 'fall': half QQ, half $Q\bar{Q} \rightarrow gg, q\bar{q}$.
- 4) Redecoupling at $T \sim \Lambda_{QCD}/40$ determines $\Omega_{QQ} \approx \Omega_Q/2$, $\Omega_{hybrid} \sim 10^{-5} \Omega_{QQ}$.

Fall cross section

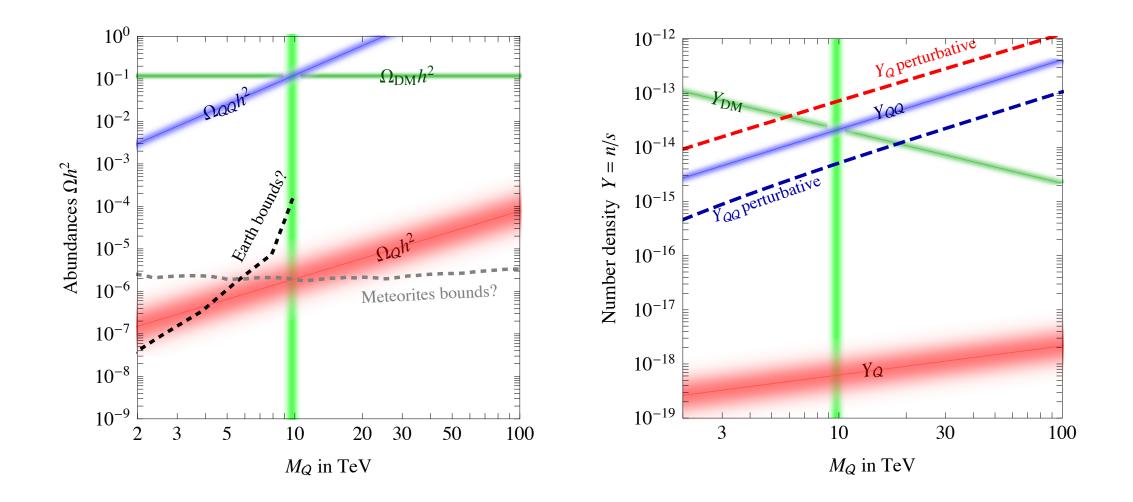
After formation, a QQ can break or fall to an unbreakable (deep enough) level. $\sigma_{\rm QCD} \sim 1/\Lambda_{\rm QCD}^2 \gg \sigma_{\rm pert} \sim \alpha_3^2/M_O^2$ because $M_{O} = 9.5 \, \text{TeV}$ constituents have large $\ell = M_{\mathcal{Q}}vb$ where b 300 F $\sigma_{\rm QCD} = 4\pi/\Lambda_{\rm QCD}^2$ is the classical impact parameter ⁷all cross section in 1/GeV² 100 $\sigma_{\rm OCD} = \pi / \Lambda_{\rm OC}^2$ $\sigma \sim b^2 \sim \frac{\ell^2}{KM_O}.$ 30 $\sigma_{\rm OCD} =$ 10 QQ becomes unbreakable when it radiates 3 $\Delta E \gtrsim T$ before the next collision after $\Delta t \sim \frac{1}{n_{\pi} v_{\pi} \sigma_{\text{OCD}}} \sim \begin{cases} \Lambda_{\text{QCD}}^2 / T^3 & T > M_{\pi} \\ e^{M_{\pi}/T} / \Lambda_{\text{OCD}} & T < M_{\pi} \end{cases}$ 0.3 0.03 0.10.3Temperature in GeV

The radiated energy is classical for $n, \ell \gg 1$ and minimal for circular orbits:

$$\frac{\Delta E}{\Delta t} = \langle W_{\text{Larmor}} \rangle \simeq \frac{2\alpha^7 \mu^2}{\underbrace{3n^8}_{\text{circular}}} \times \underbrace{\frac{3 - (\ell/n)^2}{2(\ell/n)^5}}_{\text{elliptic enhancement}} \text{ for abelian hydrogen.}$$

Non perturbative α_3 : could emit 100g with $E \sim \text{GeV}$ in one shot.

Relic abundances



Direct detection of DM

Interaction QQ/gluon analogous to Rayleigh interaction hydrogen/light:

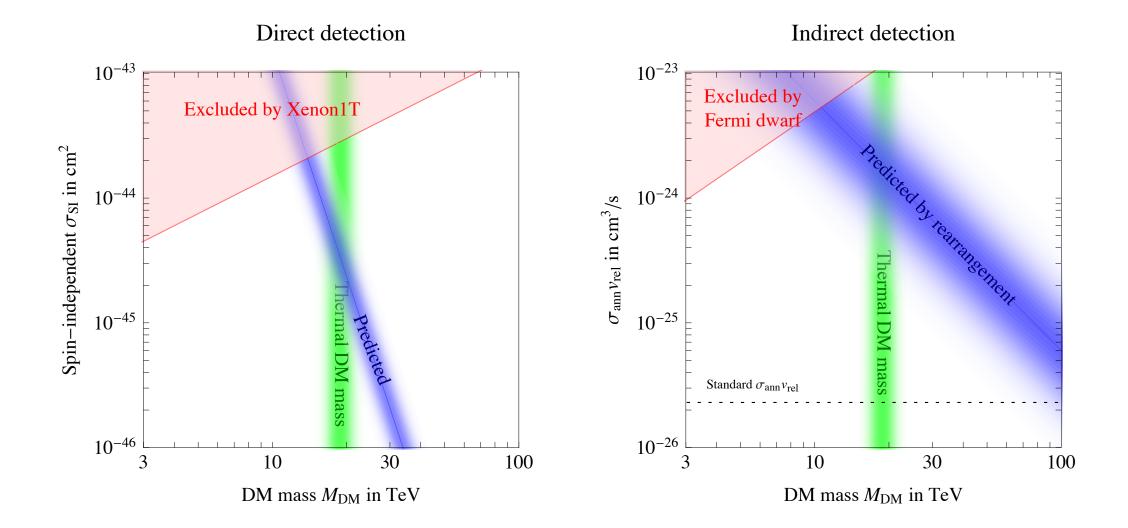
$$\mathscr{L}_{\mathsf{eff}} = c_E M_{\mathsf{DM}} \bar{B} B \bar{E}^{a2}.$$

Polarizability coefficient estimated as $c_E \sim 4\pi a^3$ in terms of the Bohr-like radius $a = 2/(3\alpha_3 M_Q)$. Actual computation gives a bit smaller

$$c_E = \pi \alpha_3 \langle B | \vec{r} \frac{1}{H_8 - E_{10}} \vec{r} | B \rangle = (0.36_{\text{bound}} + 1.17_{\text{free}}) \pi a^3$$

so that the spin-independent cross section is below bounds

$$\sigma_{\rm SI} \approx 2.3 \ 10^{-45} \, {\rm cm}^2 \times \left(\frac{20 \, {\rm TeV}}{M_{\rm DM}}\right)^6 \left(\frac{0.1}{\alpha_3}\right)^8 \left(\frac{c_E}{1.5 \pi a^3}\right)^2$$

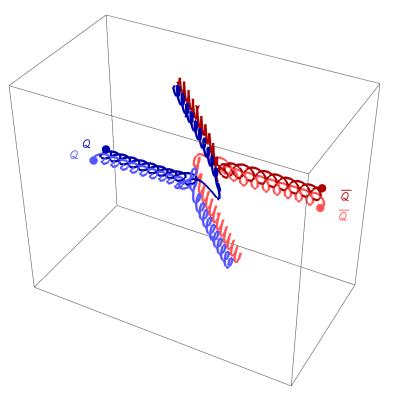


Indirect detection of DM

Analogous to hydrogen: $\sigma(H\bar{H}) \gg \alpha^2/m_e^2$ has atomic size, because enhanced and dominated by recombination $(ep) + (\bar{e}\bar{p}) \rightarrow (e\bar{e}) + (p\bar{p}) \rightarrow \cdots$. DM annihilation dominated by

 $(\mathcal{Q}\mathcal{Q}) + (\bar{\mathcal{Q}}\bar{\mathcal{Q}}) \to (\mathcal{Q}\bar{\mathcal{Q}}) + (\mathcal{Q}\bar{\mathcal{Q}}).$

Classical result: $\sigma_{ann} \sim \pi a^2$, enhanced by dipole Sommerfeld. Quantum estimate



$$\sigma_{\mathrm{ann}} v_{\mathrm{rel}} \sim \frac{\pi a^2 v_{\mathrm{rel}}/2}{\sqrt{E_{\mathrm{kin}}/E_B}} = \frac{\sqrt{2}\pi}{3M_Q^2 \alpha_3} = 1.5 \ 10^{-24} \frac{\mathrm{cm}^3}{\mathrm{sec}} \times \left(\frac{20 \,\mathrm{TeV}}{M_{\mathrm{DM}}}\right)^2 \left(\frac{0.1}{\alpha_3}\right)$$

Collider detection of ${\mathcal Q}$

QCD pair production, $pp \rightarrow Q\bar{Q}$, two stable hadron tracks, possibly charged.

LHC: $M_Q > 2 \text{ TeV}$. pp collider at $\sqrt{s} \gtrsim 65 \text{ TeV}$ needed to discover $M_Q \sim 9.5 \text{ TeV}$.

Low σ at a muon collider.

Hybrids Qq, $Qq\bar{q}'$

Strongly Interacting Massive Particles with big $\sigma \sim \sigma_{QCD}$ don't reach underground detectors. Excluded by balloons and over-heating if $\Omega_{SIMP} = \Omega_{DM}$.

 $\Omega_{
m SIMP} \sim 10^{-5} \Omega_{
m DM}$ is allowed

SIMP searches in nuclei: best bounds:

 $\frac{N_{\text{SIMP}}}{N_n} < \begin{cases} 3 \ 10^{-14} & \text{Oxygen in Earth} \\ 10^{-16} & \text{Enriched C in Earth} \\ 10^{-12} & \text{Iron in Earth} \\ 4 \ 10^{-14} & \text{Meteorites} \end{cases}$

for $M_{\mathrm{SIMP}} \sim 10 \,\mathrm{TeV}$

The predicted **primordial** cosmological average is $N_{\text{SIMP}}/N_n \sim 5 \ 10^{-9}$. Difficult to predict abundance in Earth nuclei. Rough result:

Our SIMPs allowed if don't bind to nuclei, borderline otherwise

Qg presumably lighter than $Qq\bar{q}'$, that thereby decay. Similarly for QQg, Qqqq. Qg is iso-spin singlet: π^a cannot mediate long-range nuclear forces. Heavier mesons mediate short-range forces, not computable from 1st principles. If attractive \mathcal{Q}_g can bind to big nuclei, $A \gg 1$. If repulsive \mathcal{Q}_g remains free.

In any case, SIMPs sank in the primordial (fluid) Earth and stars.

Secondary hybrids

SIMPs that hit the **Earth** get captured and thermalise in the upper atmosphere.

Accumulated mass = $M = \rho_{\text{SIMP}} v_{\text{rel}} \pi R_E^2 \Delta t \sim 25 \text{ Mton} \sim 10^4 \times \text{(fossile energy)}.$

Average density = $\left\langle \frac{N_{\text{SIMP}}}{N_n} \right\rangle_{\text{Earth}} = \frac{M}{M_Q} \frac{m_N}{M_{\text{Earth}}} \approx 4 \ 10^{-19}$, where are SIMPs now?

• If SIMPs do not bind to nuclei: SIMPs sink with $v_{\rm thermal} \approx 40 \,{\rm m/s}$, $v_{\rm drift} \approx 0.2 \,{\rm km/yr}$ and $\delta h \sim 25 \,{\rm m}$. Density in the crust: $N_{\rm SIMP}/N_n \sim 10^{-23}$. Rutherford back-scattering?

 If SIMPs bind to nuclei: BBN could make hybrid He; collisions in the Earth atmosphere could make hybrid N, O, He kept in the crust kept by electromagnetic binding.

Meteorites are byproducts of stellar explosions: do not contain primordial SIMPs; accumulate secondary SIMPs only if captured by nuclei

$$\frac{N_{\text{SIMP}}}{N_n}\Big|_{\text{meteorite}} = \frac{\rho_{\text{SIMP}}}{M_Q} \sigma_{\text{capture}} v_{\text{rel}} \Delta t \approx 7 \ 10^{-15} \frac{\sigma_{\text{capture}}}{0.01/\Lambda_{\text{QCD}}^2}$$

3) DM composite under a new force

Theory

Vector-like 'dark quarks' ${\cal Q}$ in the fundamental of 'dark color'

 $G_{\mathsf{DC}} = \mathsf{SU}(N_{\mathsf{DC}}) \text{ or } \mathsf{SO}(N_{\mathsf{DC}}), \qquad \mathcal{Q} \equiv (N_{\mathsf{DC}}, R_{\mathsf{SM}}) \oplus (\overline{N}_{\mathsf{DC}}, \overline{R}_{\mathsf{SM}})$

possibly with Yukawas:

$$\mathscr{L} = \mathscr{L}_{\mathsf{SM}} - \frac{\mathscr{G}_{\mu\nu}^{A2}}{4g_{\mathsf{DC}}^2} + \frac{\theta_{\mathsf{DC}}}{32\pi^2} \mathscr{G}_{\mu\nu}^A \widetilde{\mathscr{G}}_{\mu\nu}^A + \bar{\mathscr{Q}}_i (i\not\!\!\!D - m_{\mathscr{Q}_i}) \mathscr{Q}_i + (y_{ij}H\mathscr{Q}_i\mathscr{Q}_j + \widetilde{y}_{ij}H^*\mathscr{Q}_i\mathscr{Q}_j + \mathsf{h.c.})$$

Main possibilities

Higgs H: fundamental or composite?

Dark constituents Q: fermions or scalars? Real or complex?

Heavier or lighter than the confinement scale Λ_{DC} ? Massless?

DM as dark baryon or dark pion?

Cosmological abundance: thermal or dark baryon asymmetry?

DM stability from accidental symmetries

1. Dark-color number implies the stability of the lightest dark baryon \mathcal{B} . Dimension-6 operators give slow enough $\tau_{\rm DM} \sim \Lambda^4 / M_{\rm DM}^5$: golden class.

 $M_{\text{DMB}} \sim \begin{cases} 100 \text{ TeV} & \text{if DM is a thermal relic,} \\ 5 \text{ GeV}, 3 \text{ TeV} & \text{if DM has a dark asymmetry.} \end{cases}$

2. **Species Number**: if no allowed Yukawas, **dark-pions** π made of different species $\overline{Q}_i Q_j$ are stable. Silver class: broken by dim-4,5. EW annihilations:

 $M_{\text{DM}\pi} \sim (1-3)$ TeV like in Minimal Dark Matter.

- 3. *G*-parity: the \mathscr{L} of real SU(2) rep.s (e.g. 3_0) is symmetric under $\mathcal{Q} \xrightarrow{G} \exp(i\pi T^2)\mathcal{Q}^c$. A DC π in the 3_0 can have vanishing anomaly under SU(2)_L.
- 4. More: $m_Q \sim \Lambda_{DC}$ can lead to extra stable states. E.g. in QCD $\Lambda = uds$ does not decay into KN.

Bonus: why DM is neutral under γ , g and Z? If many bound states are present, the less charged state tends to be the lightest. And DM mass scale natural.

Assumptions

- $\beta_{DC} < 0$ confines. No sub-Planckian Landau poles for g_Y, g_2, g_3 .
- Dark quarks in $SU(5)_{GUT}$ fragments:

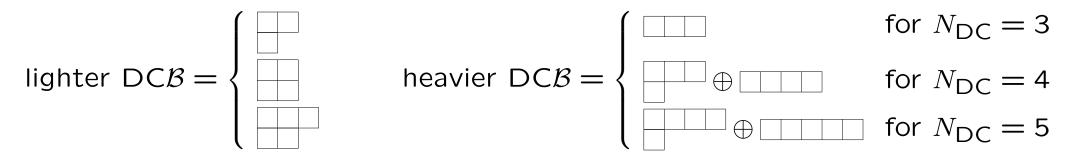
SU(5)	$SU(3)_c$	$SU(2)_L$	$U(1)_Y$	charge	name
1	1	1	0	0	N
5	3	1	1/3	1/3	D
	1	2	-1/2	0,-1	L
10	3	1	-2/3	-2/3	U
	1	1	1	1	E
	3	2	1/6	2/3, -1/3	Q
24	1	3	0	-1, 0, 1	V
	8	1	0	0	G
	3	2	5/6	4/3, 1/3	X

SU(N_{DC}) and $m_{Q} \ll \Lambda_{DC}$

Dynamics: the condensate $\langle \bar{\mathcal{Q}} \mathcal{Q} \rangle$ breaks the flavour symmetry

 $SU(N_{\mathsf{DF}})_L \otimes SU(N_{\mathsf{DF}})_R \to SU(N_{\mathsf{DF}}).$

So DC π are $\overline{Q}Q$. Dark-baryons are dark-color anti-symmetric, the lighter ones have $\ell = 0$, so must be symmetric under spin \otimes flavor:



SU(N_{DC}) and $m_Q \ll \Lambda_{DC}$: golden models

$SU(N_{DC})$ dark-color.	$N_{\sf DC}$) dark-color. Yukawa Allowed		Dark-	Dark- Dark-		
Dark-quarks	Dark-quarks couplings		pions	baryons	under	
$N_{\rm DF}=3$			8	8, $\overline{6}$, for $N_{DC} = 3, 4,$	SU(3) _{DF}	
Q = V	0	3	3	VVV = 3	$SU(2)_L$	
$\mathcal{Q} = N \oplus L$	1	3,, 14	unstable	$N^{N*} = 1$	$SU(2)_L$	
$N_{DF} = 4$			15	$\overline{20}, 20', \ldots$	SU(4) _{DF}	
$\mathcal{Q} = V \oplus N$	0	3	3 × 3	VVV, VNN = 3, VVN = 1	$SU(2)_L$	
$\mathcal{Q} = N \oplus L \oplus \tilde{E}$	2	3, 4, 5	unstable	$N^{N*} = 1$	$SU(2)_L$	
$N_{DF} = 5$			24	$\overline{40}, \overline{50}$	SU(5) _{DF}	
$\mathcal{Q} = V \oplus L$	1	3	unstable	VVV = 3	$SU(2)_L$	
$\mathcal{Q} = N \oplus L \oplus ilde{L}$	2	3	unstable	$NL\tilde{L}=1$	$SU(2)_L$	
=	2	4	unstable	$NNL ilde{L}, L ilde{L}L ilde{L}=1$	$SU(2)_L$	
$N_{DF} = 6$			35	70, 105'	SU(6) _{DF}	
$\mathcal{Q} = V \oplus L \oplus N$	2	3	unstable	VVV, VNN = 3, VVN = 1	$SU(2)_L$	
$\mathcal{Q} = V \oplus L \oplus \tilde{E}$	2	3	unstable	VVV = 3	$SU(2)_L$	
$\mathcal{Q} = N \oplus L \oplus \tilde{L} \oplus \tilde{E}$	3	3	unstable	$NL ilde{L}, ilde{L} ilde{E} = 1$	$SU(2)_L$	
=	3	4	unstable	$NNL ilde{L}, L ilde{L}L ilde{L}, N ilde{E} ilde{L} ilde{L}=1$	$SU(2)_L$	
$N_{DF} = 7$			48	112	$SU(7)_{DF}$	
$\mathcal{Q} = L \oplus \tilde{L} \oplus E \oplus \tilde{E} \oplus N$	4	3	unstable	$LLE, \tilde{L}\tilde{L}\tilde{E}, L\tilde{L}N, E\tilde{E}N = 1$	$SU(2)_L$	
$\mathcal{Q} = N \oplus L \oplus \tilde{E} \oplus V$	3	3	unstable	VVV, VNN = 3, VVN = 1	$SU(2)_L$	
$N_{DF} = 9$			80	240	$SU(9)_{DF}$	
$\mathcal{Q} = Q \oplus \tilde{D}$	1	3	unstable	$QQ\tilde{D} = 1$	$SU(2)_L$	

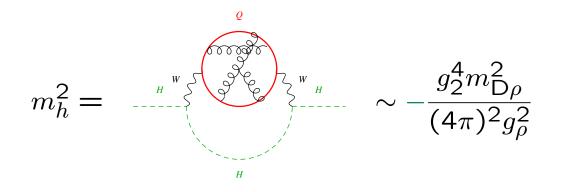
Notation:

 $R \equiv (R, N_{\mathsf{DC}}) \oplus (\bar{R}, \bar{N}_{\mathsf{DC}}) \qquad \tilde{R} \equiv (\bar{R}, N_{\mathsf{DC}}) \oplus (R, \bar{N}_{\mathsf{DC}})$

Simplest model: massless dark quark

 $G_{SM} \otimes SU(N_{DC})$ with one extra fermion $\mathcal{Q} = V = (0_Y, 3_L, 1_c, N_{DC} \oplus \overline{N}_{DC}).$

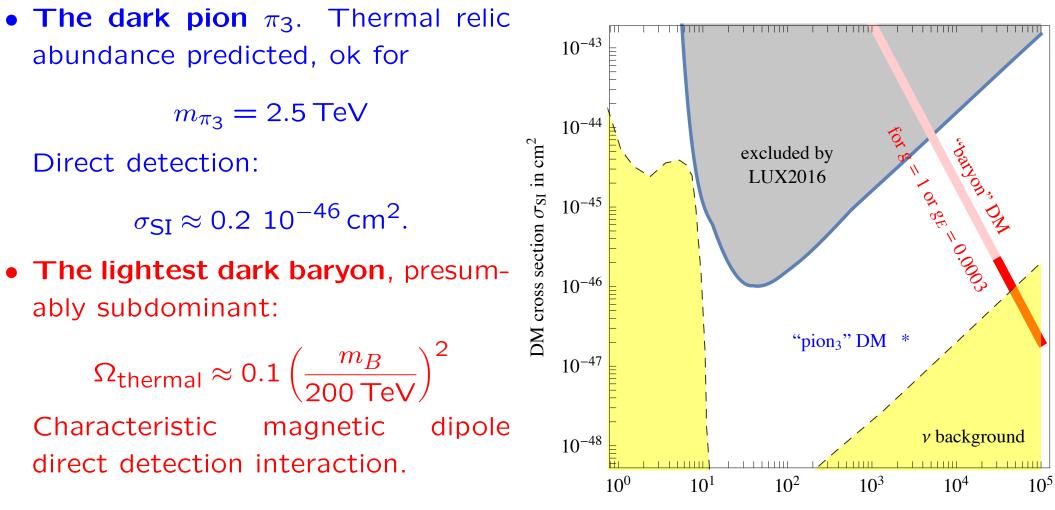
Select a sample point in parameter space: no masses, $m_h = m_Q = 0$ (motivation not discussed here). As many parameters as in the SM: all new physics is univocally predicted. Dark-color strong at Λ_{DC} induces the weak scale



So $m_{D\rho} \sim 20 \text{ TeV}$, dark-baryons at $m_{DB} \sim 50 \text{ TeV}$; dark-pions in the $3 \otimes 3 - 1 = 3 \oplus 5$ of $SU(2)_L$ at $m_{D\pi_n} \approx \frac{g_2 m_{\rho}}{4\pi} \sqrt{\frac{3}{4}(n^2 - 1)} \sim 2 \text{ TeV}$. $\pi_5 \to WW$ via anomalies.

Dark Matter

The model has **two** accidentally stable composite DM candidates:



Dark Matter mass in GeV

DM with electric and magnetic dipoles

For odd $SU(N_{DC})$ dark baryons are fermions and have

$$\mu_{\rm mag} \sim \frac{e}{M_{\rm DM}}, \qquad d_{\rm el} \sim \frac{e \, \theta_{\rm DC} \min[m_Q]}{M_{\rm DM}^2}$$

Direct detection enhanced at low recoil energy E_R :
$$\frac{d\sigma}{dE_R} \approx \frac{e^2 Z^2}{4\pi E_R} \left(\mu_{\rm mag}^2 + \frac{d_{\rm el}^2}{v^2}\right) \neq \sigma_{\rm SI} \frac{A^2}{2M_N v^2}.$$

Some models have higher-spin DM that could give rise e.g. to $B_{\mu}B_{\nu}^{*}F^{\mu\nu}$?

Furthermore, Yukawa couplings give Higgs-mediated direct-detection

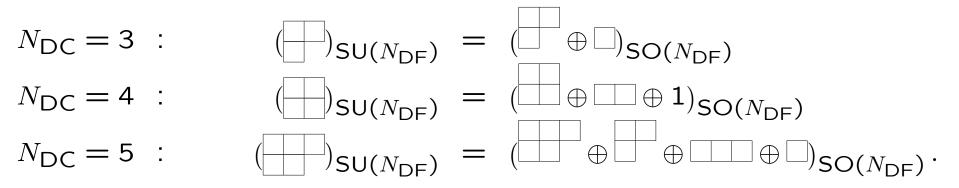
$$\sigma_{\rm SI} = \frac{g_{\rm DM}^2 m_N^4 f_N^2}{2\pi v^2 M_h^4}, \qquad g_{\rm DM} = \frac{\partial M_{\rm DM}}{\partial h}$$

SO(N_{DC} **) and** $m_{Q} \ll \Lambda_{DC}$

Dark quarks in real R (complex C) SM representations are Majorana (Dirac).

Condensate $\langle C\bar{C} \rangle = 2 \langle RR \rangle \sim 4\pi \Lambda_{DC}^3$ breaks flavor symmetry as SU(N_{DF}) \rightarrow SO(N_{DF}). So dark-pions are QQ. CC have bad quantum numbers for DM: Majorana dark quarks are needed to let them decay.

There is no conserved U(1)_{DB}; lightest baryon kept stable by $Z_2 = O(N)/SO(N)$. Baryons are those of SU(N) because $\epsilon_{ijk\cdots}$ is the same, but decompose under flavor SO(N_{DF}) \subset SU(N_{DF})



'8-fold' way would be 5-fold way plus 3-fold way. Presumably smaller is lighter.

SO(N_{DC} **) and** $m_{Q} \ll \Lambda_{DC}$ **: golden models**

$SO(N_{DC})$ dark-color.	Yukawa	Allowed	Dark-	Dark-
Dark-quarks	couplings	$N_{\sf DC}$	pions	baryons
$N_{DF} = 3$			5	$3, 1, \dots$ for $N_{DC} = 3, 4, \dots$
Q = V	0	3, 4,, 7	unstable	$V^N = 3, 1,$
$N_{DF} = 4$			9	4, 1,
$\mathcal{Q} = N \oplus V$	0	3, 4,, 7	3	VVN = 1, V(VV + NN) = 3,
				$VV(VV + NN) = 1, \dots$
$N_{DF} = 5$			14	_5,1
$\mathcal{Q} = L \oplus N$	1	3, 4,, 14	unstable	$L\bar{L}N = 1,$
				$L\bar{L}(L\bar{L}+NN)=1,$
$N_{DF} = 7$			27	1,
$\mathcal{Q} = L \oplus V$	1	4	unstable	$(L\bar{L} + VV)^2 = 1$
$\mathcal{Q} = L \oplus E \oplus N$	2	4,5	unstable	$(E\bar{E} + L\bar{L})^2 + NN(L\bar{L} + E\bar{E}) = 1$
$N_{DF} = 8$			35	1
$\mathcal{Q} = G$	0	4	unstable	GGGG = 1
$\mathcal{Q} = L \oplus N \oplus V$	2	4	unstable	$(L\overline{L} + VV)^2 + NN(L\overline{L} + VV) = 1$
$N_{DF} = 9$			44	1
$\mathcal{Q} = L \oplus E \oplus V$	2	4	unstable	$(E\bar{E} + L\bar{L} + VV)^2 = 1$
$N_{DF} = 10$			54	1
$\mathcal{Q} = L \oplus E \oplus V \oplus N$	3	4	unstable	as $L \oplus E \oplus V + NN(L\overline{L} + E\overline{E} + VV) = 1$

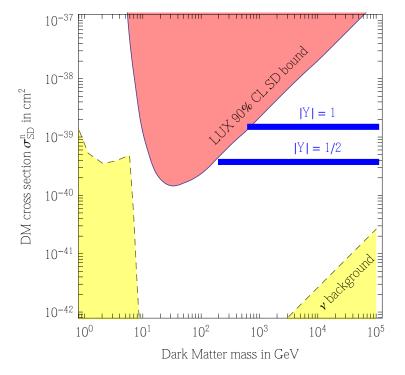
Phenomenology of real dark baryons

No Z vector couplings, no dipoles, no asymmetry. They mix like Wino/Bino/Higgsino giving spin-dependent effects from

$$-g_A Z_\mu \frac{g_2}{\cos \theta_W} \frac{\overline{\mathsf{DM}} \gamma_\mu \gamma_5 \mathsf{DM}}{2}$$

with

$$g_A \sim \frac{y^2 v^2}{\Delta m^2}, \qquad \Delta m \gtrsim \frac{\alpha_2}{4\pi} M_{\text{DM}}$$



Majorana techni-baryon DM

If $\Delta m_{2_{1/2}} \lesssim 100 \,\text{keV}$ one gets inelastic DM.

Complex ineliminable phases in Yukawas can give electric dipoles

$$d_e \sim Ne \frac{\alpha \operatorname{Im}[y_L y_R]}{16\pi^3} \frac{m_e}{m_L m_V} \sim 10^{-27} e \operatorname{cm} \times \operatorname{Im}[y_L y_R] \frac{\operatorname{TeV}^2}{m_L m_V} < 0.09 \ 10^{-27} e \operatorname{cm}$$

Collider signals: dark pions

gauge	Dark-quark	Dark-pion content under $SU(2)_L\otimes U(1)_Y$								
group	content	1_{0}	$1_{\pm 1}$	$1_{\pm 2}$	$ 2_{\pm 1/2} $	$2_{\pm 3/2}$	3 ₀	$3_{\pm 1}$	$ $ 4 $_{\pm 1/2}$	50
$SU(N)_{DC}$	V						1_{stable}			1
	$N \oplus V$	1					3 _{stable}			1
	$N\oplus L$	1			1		1			
	$N\oplus L\oplus ilde{E}$	2	1		2		1			
	$V\oplus L$	1			1		2		1	1
	$V\oplus L\oplus ilde{E}$	2			2		2	1	1	1
	$V\oplus L\oplus N$	2			2		4		1	1
	$N\oplus L\oplus ilde{L}$	2	1		2		2	1		
	$N\oplus L\oplus ilde{L}\oplus ilde{E}$	3	2		3	1	2	1		
	$N\oplus L\oplus ilde{E}\oplus V$	3	1		3		4	1	1	1
	$N\oplus L\oplus ilde{L}\oplus E\oplus ilde{E}$	4	3	1	4	2	2	1		
$SO(N)_{DC}$	V									1
	$L\oplus N$	1			1		1	1		
	$N\oplus V$	1					1_{stable}			1
	$L\oplus V$	1			1		1	1	1	1
	$L\oplus N\oplus E$	2	1	1	2	1	1	1		
	$L\oplus E\oplus V$	2		1	2	1	1	2	1	1
	$L\oplus N\oplus V$	2			2		2	1	1	1
	$L\oplus N\oplus V\oplus E$	3	1	1	3	1	2	2	1	1

(Models with coloured Q give coloured $DC\pi$)

Some dark π decay and can be singly produced via anomalies: $\pi_{1,3,5_0} \leftrightarrows WW, ZZ, \gamma\gamma$. Others are pair-produced via $g_{Y,2}$ and decay $\pi_{2_{1/2}} \rightarrow H\pi_{1_0}, \pi_{1_1} \rightarrow HH\pi_{1_0}$.

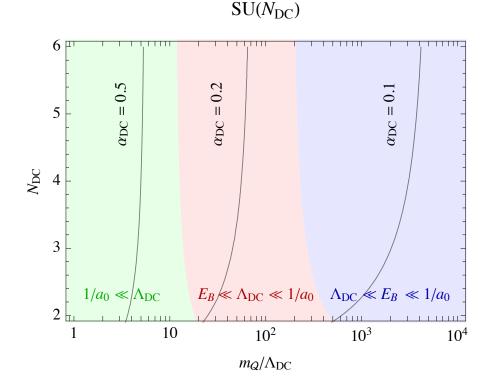
Heavy dark quarks, $m_Q \gg \Lambda_{DC}$

We assume that DM is the lightest \mathcal{Q}

SU: Q = V or N (then \mathcal{B} with spin $N_{\text{DC}}/2$).

SO: Q = L slightly mixed with heavier N or V trough LHN.

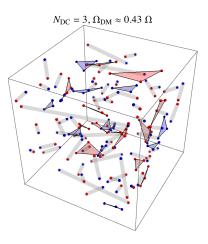
Non-relativistic non-abelian $V \sim -\alpha_{DC}/r + \Lambda_{DC}^2 r$ makes bound states $Q\bar{Q}$, QQ, QQQ ... with size $a_0 \sim 1/\alpha_{DC}m_Q$ and binding $E_B \sim \alpha_{DC}^2 m_Q$. 3 distinct regions:



Non-standard dark cosmology

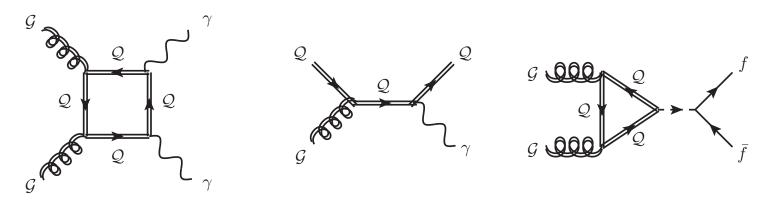
1) If $\Lambda_{DC} < T_{fo} \approx m_Q/25$, free Q freeze-out at $T \sim T_{fo}$. 2) Dark confinement at $T \sim \Lambda_{DC}$ (1st order phase transition: gravity waves). Some Q form dark baryons \mathcal{B} :

$$\Omega_{\mathsf{DMB}} = \frac{\Omega_{\mathcal{Q}+\bar{\mathcal{Q}}}}{1+2^{N_{\mathsf{DC}}-1}/N_{\mathsf{DC}}}$$

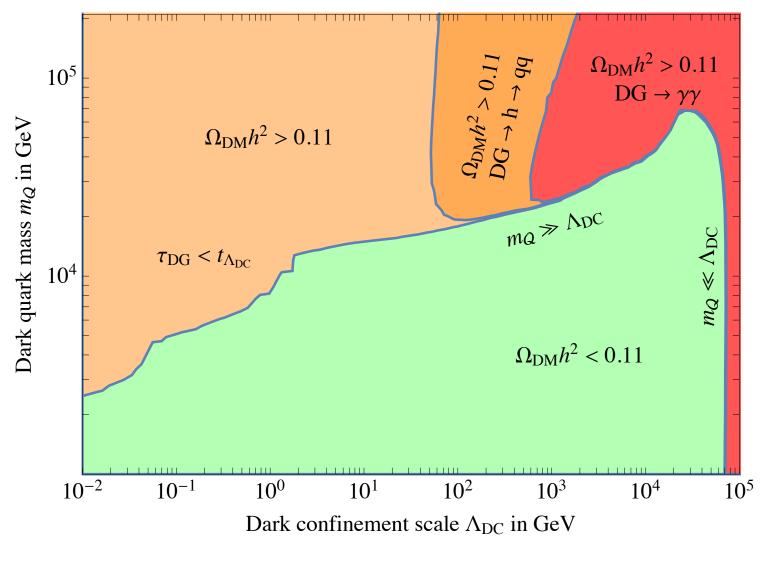


3) $\mathcal{B}\overline{\mathcal{B}}$ annihilations enhanced by (kinematically allowed) recombination $(\mathcal{Q}^{N_{\text{DC}}}) + (\bar{\mathcal{Q}}^{N_{\text{DC}}}) \rightarrow (\mathcal{Q}\overline{\mathcal{Q}}) + (\mathcal{Q}^{N_{\text{DC}}-1})(\bar{\mathcal{Q}}^{N_{\text{DC}}-1}), \qquad \sigma_{\mathcal{B}\overline{\mathcal{B}}}v_{\text{rel}} \sim \frac{\pi}{\alpha_{\text{DC}}m_{\mathcal{Q}}^2}$ Cross section could be bigger if bound states \mathcal{B}^* are excited by $T > E_{\mathcal{B}}$.

4) Slow decays of dark glue-balls with $M_{DG} \sim 7\Lambda_{DC}$ can dilute DM



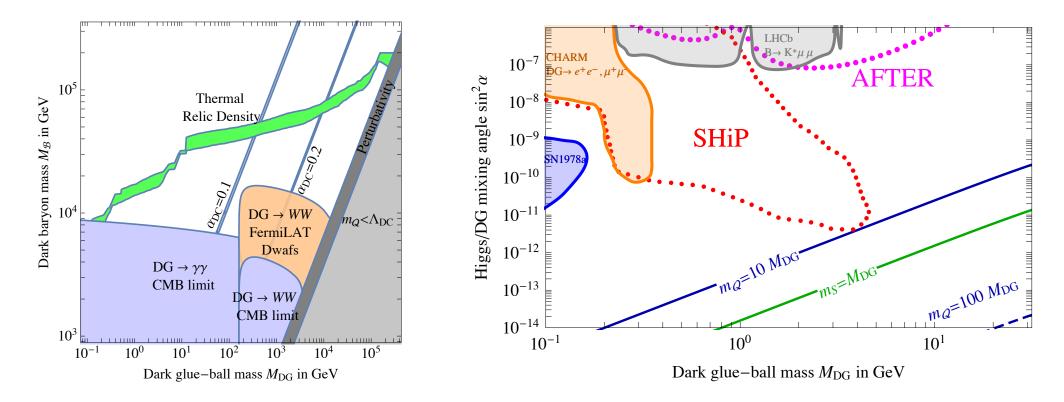
Composite DM cosmological abundance



(Enhanced σ in intremediate region? [Harigaya et al.])

Extra unusual DM signals

Indirect detection: enhanced $\sigma_{B\bar{B}} > 3 \ 10^{-26} \text{ cm}^3/\text{ sec.}$



Long-lived glue-balls can be tested at accelerators.

Radioactive DM: excited states \mathcal{B}^* are long-lived if $E_B < M_{DG}$.

Conclusions

DM as accidentally stable composite under a new force:

- DM abundance reproduced for $\Lambda_{DC} \sim 100 \text{ TeV}$ if $M_Q \ll \Lambda_{DC}$.
- Magnetic dipoles \Rightarrow peculiar $d\sigma/dE_R$ in direct detection.
- $\sigma_{\mathcal{BB}^*}$ enhanced by recombination: indirect detection, cosmology.
- β , γ decays of radioactive DM.
- light dark glue-balls at accelerators.

DM as a QCD hadron made of a new heavy Q:

- Q-onlyum can be DM for $M_Q \approx 9.5 \text{ TeV}$; hybrids suppressed.
- Direct detection predicted just below bounds.
- Stable tracks at colliders, pp at $\sqrt{s} = 65 \text{ TeV}$ needed.
- Indirect detection enhanced by recombination.
- Search for Qg hybrids, free or in nuclei.

DM as the QCD di-baryon *uuddss*

• DM abundance reproduced for $M_{\mathcal{S}} \approx 1.5 \,\text{GeV}$. Excluded by SK.