Results on geoneutrinos at Borexino experiment

Heavy Quarks and Leptons 2018 - Yamagata

Davide Basilico

Istituto Nazionale di Fisica Nucleare

Outline

1. Geoneutrinos

2. Borexino

3. Analysis and results

Copyright @ 2004 Pearson Prentice Hall, Inc.

What are geoneutrinos?

What are geoneutrinos?

What are geoneutrinos?

- **Direct messengers** of the abundances of radioactive elements
- Measuring their flux and spectrum

 \(\rightarrow\) understand the radiogenic contribution to the total heat balance of the Earth.
- Discriminate Earth models (cosmochemical, geochemical, geodynamical etc...)

How to measure geoneutrinos?

What do we need to measure geoneutrinos?

Anti-neutrinos have **low interaction rates:** $\sigma \sim 10^{-44} \text{ cm}^2$ @ MeV \rightarrow experiments with **extremely low background**

- Large volume detectors
- Construction materials → high radiopurity

How to measure geoneutrinos?

What do we need to measure geoneutrinos?

Anti-neutrinos have **low interaction rates:** $\sigma \sim 10^{-44}$ cm² @ MeV \rightarrow experiments with **extremely low background**

- Large volume detectors
- Construction materials → high radiopurity

KamLAND in Japan

Main goal: reactor anti-neutrinos measurements

Borexino experiment in Gran Sasso, Italy

- Extreme radiopurity achieved to perform solar neutrinos spectroscopy (main goal)
- But also able to measure anti-neutrinos!
- No nuclear power plant in Italy → smaller background wrt Kamland
- Underground lab \rightarrow shielding cosmic rays radiation and related background

Gran Sasso National Laboratory (Italy)

Gran Sasso National Laboratory (Italy)

Gran Sasso National Laboratory (Italy)

Borexino detector

- DAQ started in 2007
- Main analysis: solar neutrinos spectroscopy (see David Bravo's talk)
- 300 ton of ultra-pure liquid scintillator
- Extremely low radioactive background
- 2000 PMTs to measure:
 - positions → photons time arrival
 - energy → number of photons detected

How to detect geo-v in Borexino? $(\rightarrow \overline{\nu})$

Inverse Beta Decay

$$\overline{\nu}_e + p \rightarrow e^+ + n$$

Energy $\overline{\nu}_e$ threshold: 1.8 MeV

Prompt signal:

- e⁺ scintillation + annihilation (2γ)
- $E_{prompt} \approx E_{geoneutrino} 0.782 \text{ MeV}$

Delayed signal (neutron):

- n capture on H
- $E_{delayed} \approx 2.2 \text{ MeV}$
- $<\Delta t> = 254.5 \pm 1.8 \,\mu s$

How to detect geo-v in Borexino? $(\rightarrow \overline{\nu})$

Inverse Beta Decay

$$\overline{\nu}_e + p \rightarrow e^+ + n$$

$$e^+ \qquad e^- \qquad \gamma$$

$$\overline{\nu}_e \qquad H \qquad D \qquad \gamma$$

Energy $\overline{\nu}_e$ threshold: 1.8 MeV

Prompt signal:

- e⁺ scintillation + annihilation (2γ)
- $E_{prompt} \approx E_{geoneutrino} 0.782 \text{ MeV}$

Delayed signal (neutron):

- n capture on H
- $E_{delayed} \approx 2.2 \text{ MeV}$
- $<\Delta t> = 254.5 \pm 1.8 \,\mu s$

Coincidence in time / space / energy between prompt and delayed guarantees a **very high signal/background ratio** (100:1 in Borexino)

Reactor $\overline{\nu}$ background

- MeV anti-v background: nuclear power plants (E < 8 MeV)
- 98% European ones
- Estimation of the exp. events from the spectral components of ²³⁵U, ²³⁸U, ²³⁹Pu and ²⁴¹Pu

Reactor $\overline{\nu}$ background

- MeV anti-v background: nuclear power plants (E < 8 MeV)
- 98% European ones
- Estimation of the exp. events from the spectral components of ²³⁵U, ²³⁸U, ²³⁹Pu and ²⁴¹Pu

Expected: 5.7 ± 0.3 events / (100 ton yr)

→ Information on fuel power composition (in time!) is required

Other background (not $\overline{\nu}$ related)

1) Cosmogenic-muon related:

- ⁹Li and ⁸He decaying β⁻ + neutron;
- High-energy neutrons: neutron scattering + neutron capture = prompt + delayed
- 2) Accidental coincidences
- 3) Internal radioactivity: (α,n) and (γ,n) reactions

Source

Rate [events/100ton yr]

⁹ Li- ⁸ He	$0.194^{+0.125}_{-0.089}$
Accidental coincidences	0.221 ± 0.004
Time correlated	$0.035^{+0.029}_{-0.028}$
(α,n) in scintillator	0.165 ± 0.010
(α, n) in buffer	< 0.51
Fast n's (μ in WT)	< 0.01
Fast n's (μ in rock)	< 0.43
untagged muons	0.12 ± 0.01
Fission in PMTs	0.032 ± 0.003
²¹⁴ Bi- ²¹⁴ Po	0.009 ± 0.013
Total	$0.78^{+0.13}_{-0.10}$
	< 0.65 (combined)

Almost negligible (if compared to reactors)

Selection cuts

Prompt signal:

- $Q_{prompt} > 408 \text{ p.e.}$
- Fiducial Volume Cut

1 MeV ≈ 500 p.e.

Delayed signal:

• 860 < Q_{delaved} < 1300 p.e.

Coincidence:

- Time: $20 < \Delta t < 1280 \mu s$
- Space: ΔR < 100 cm

Muon correlated cuts
Pulse shape discrimination cuts

Selection cuts

Prompt signal:

- $Q_{prompt} > 408 \text{ p.e.}$
- Fiducial Volume Cut

Delayed signal:

• 860 < Q_{delaved} < 1300 p.e.

Coincidence:

- Time: $20 < \Delta t < 1280 \mu s$
- Space: ΔR < 100 cm

Muon correlated cuts
Pulse shape discrimination cuts

1 MeV ≈ 500 p.e.

Total efficiency = $(84.2 \pm 1.5)\%$ (MC). 77 candidates selected

Spectrum from 2056 days data-taking

Two fits: U/Th ratio

- 1. Fixed to chondritic value model
- 2. Free

- Un-binned likelihood fit of prompt events energy spectrum
- Reactor spectrum is obtained by MC simulations and left free in the fit
- Non- $\overline{\nu}_e$ background considered in the fit but constrained to independent estimations \rightarrow completely negligible

Evidence and implications

1 TNU = 1 event detected over 1 year exposure of 10^{32} target protons at 100 % efficiency

Fixing mass ratio U/Th=3.9 $N_{geo} = 23.7^{+6.5}_{-5.7}(stat)^{+0.9}_{-0.6}(syst)$ geoneutrino events: 5.9σ evidence $S_{geo} = 43.5^{+11.8}_{-10.4}(stat)^{+2.7}_{-2.4}(syst)$ TNU

Evidence and implications

1 TNU = 1 event detected over 1 year exposure of 10^{32} target protons at 100 % efficiency

Fixing mass ratio U/Th=3.9 $N_{geo} = 23.7^{+6.5}_{-5.7}(stat)^{+0.9}_{-0.6}(syst)$ geoneutrino events: $\underline{5.9\sigma}$ evidence $S_{geo} = 43.5^{+11.8}_{-10.4}(stat)^{+2.7}_{-2.4}(syst)$ TNU

Mass ratio U/Th free parameter
Best fit value compatible with U/Th=3.9

Implications: heat

Vertical band between red and blue line due to U+Th distribution in the mantle

U+Th: radiogenic heat is 23-36 TW (best fit) and 11-52 TW for 1σ interval Complete – U+Th+K: mass ratio U/Th=3.9 and K/U = 10^4 , radiogenic heat 33^{+28}_{-20} TW

Independently measured total Earth surface power: 47 \pm 2 TW \rightarrow large contribution from radioactive decays!

Conclusions

- 1) The background level in Borexino allows to perform a real-time spectroscopy of geoneutrinos, limited only by the size of the detector;
- 2) Borexino-only data: **geoneutrinos exist, with 5.9 significance**;
- 3) The **radiogenic heat** gives an important contribution to the Earth power balance;
- 4) Interdisciplinary field between physics and geoscience.

Thank you!

Geoneutrinos energy spectra

$$^{238}\text{U} \to^{206}\text{Pb} + 8\alpha + 8e^{-} + 6\bar{\nu}_{e} + 51.7 \text{ MeV}$$
 $^{232}\text{Th} \to^{208}\text{Pb} + 6\alpha + 4e^{-} + 4\bar{\nu}_{e} + 42.7 \text{ MeV}$
 $^{40}\text{K} \to^{40}\text{Ca} + e^{-} + \bar{\nu}_{e} + 1.31 \text{ MeV}$

Energy spectra of geo-neutrinos released in the reactions: 238U chain in black, 232Th chain in red, 40K in blue. Vertical line: IBD threshold (1.806 MeV)

Chondrites

- Chondrites are primitive, undifferentiated meteorites, a collection of the earliest formed material in the solar system.
- Studies of meteorites add much to our understanding of the age of the solar system and the nature of the building blocks that makes up the planets.
- Mixture of silicate and metal materials in proportions similar to that found in the terrestrial planet