Measurement of
 $\Gamma\left(K^{+} \rightarrow e^{+} v\right) / \Gamma\left(K^{+} \rightarrow \mu^{+} v\right)$ to search for lepton universality violation using a stopped K^{+}beam

Suguru Shimizu
Osaka University
on behalf of J-PARC E36 collaboration

Contents

- Introduction
- J-PARC E36 experimental apparatus
- Analysis status
- Positron momentum spectrum
- Contribution from $K^{+} \rightarrow e^{+} v\left(K_{e 2}\right), K^{+} \rightarrow e^{+} v \gamma\left(K_{e 2 v}\right)$, and $K^{+} \rightarrow \pi^{0} e^{+} v\left(K_{e 3}\right)$ decays
- Systematic uncertainties
- Reproducibility of the experimental conditions by Monte Carlo simulation
- Uncertainty of the acceptance ratio of $\Omega\left(K_{\mu 2}\right) / \Omega\left(K_{e 2}\right)$
- Uncertainty of e^{+}interaction in the K^{+}stopping target
- Summary

Search for Lepton universality violation in K_{12} decays

- The J-PARC E36 experiment: precise measurement of decay width ratio

$$
R_{K}{ }^{\exp }=\frac{\Gamma\left(K^{+} \rightarrow e^{+} v\right)}{\Gamma\left(K^{+} \rightarrow \mu^{+} v\right)}
$$

(b)

- The hadronic form factors are cancelled out, and ${R_{K}}^{S M}$ with radiative correction $\left(\delta_{r}\right)$ is highly precise. Deviation of R_{K} from SM indicates lepton universalitv violation.

$$
\left.R_{K}^{S M}=\frac{m_{e}^{2}}{m_{\mu}^{2}} \frac{m_{K}^{2}-m_{e}^{2}}{m_{K}^{2}-m_{\mu}^{2}}\right)^{2}\left(1+\delta_{r}\right)=(2.477 \pm \mathbf{0 . 0 0 1}) \times 10^{-5}
$$

- The current PDG world average is (2.488 ± 0.010) $\times 10^{-5}$. It was obtained by an in-flight K^{+}technique.
- In E36, a stopped K^{+}method was adopted, which was totally different systematic conditions and worth determining the R_{k} value with comparable experimental uncertainty.

Lepton Universality Violation in B decays

Figures taken from reports by Heavy Flavor Averaging Group (2017) and LHCb (2017)

$$
\mathcal{R}(D)=\frac{\mathcal{B}\left(B \rightarrow D \tau \nu_{\tau}\right)}{\mathcal{B}\left(B \rightarrow D \ell \nu_{\ell}\right)}, \mathcal{R}\left(D^{*}\right)=\frac{\mathcal{B}\left(B \rightarrow D^{*} \tau \nu_{\tau}\right)}{\mathcal{B}\left(B \rightarrow D^{*} \ell \nu_{\ell}\right)}
$$

$R(\mathrm{D})=0.403 \pm 0.047 ; 2.2 \sigma$ from the SM
LHCb-PAPER-2017-017

$$
R\left(D^{*}\right)=0.305 \pm 0.015
$$

$$
3.4 \sigma \text { above the SM }
$$

$$
R_{K^{(\rho)}}=\frac{B R\left(B \rightarrow K^{(\vartheta)} \mu \mu\right)}{B R\left(B \rightarrow K^{()^{()}} e e\right)}
$$

$R(K): 2.6 \sigma$ from the SM

3.9σ from the SM

The J-PARC E36 experiment using a stopped K^{+}beam

End View

Stopped K method

- K1.1BR beamline
- Beam Cherenkov
- K^{+}stopping target

Tracking

- MWPC (C2, C3, C4)
- Spiral Fiber Tracker (SFT)
- Thin trigger counter (TTC)

Gamma ray

- TOF (TOF1, TOF2) • CsI(TI)
- Aerogel Cherenkov (AC) • Gap veto (GV)
- Pb glass counter (PGC)

The E36 experiment at J-PARC

- Magnet was moved to J-PARC, Dec. 2014
- Detector installation, till Apr. 2015
- Commissioning with a beam, till Oct. 2015
- Data collection, till Dec. 2015
- Detector dismantled, Mar. 2016

Kez momentum spectrum

- The Kez momentum spectrum was obtained by requiring PID detectors.
- Black histogram is the experimental data. Red, blue, and purple ones are the Monte Carlo simulation of $K_{e 2}$, structure dependent $K^{+} \rightarrow e^{+} v \gamma\left(K_{e 2 \gamma}\right)$, and $K^{+} \rightarrow \pi^{0} e^{+} v\left(K_{e 3}\right)$ decays. Green one is sum of the three decays.

$\mathrm{CsI}(\mathrm{TI})$ pulse shape analysis and its calibration using $K^{+} \rightarrow \pi^{+} \pi^{0}$ decay

H. Ito et al., to be published in NIM-A

Analysis of structure dependent (SD) $K^{+} \rightarrow e^{+} v \gamma$ decays

- The photon from the SD process tends to be emitted in opposite direction of e^{+} motion. The photon energy from SD is higher than IB.
- Complete rejection of $K^{+} \rightarrow \pi^{0} e^{+} v$ decays is impossible. Missing Mass (MM) was used
- We can successfully extract SD Ke2v decays.

Systematic uncertainty: effect from $\Omega\left(K_{\mu 2}\right) / \Omega\left(K_{e 2}\right)$ ratio uncertainty

- $N\left(K_{\pi 2}\right) / N\left(K_{\mu 2}\right)$ ratio is obtained as a function of the spectrometer field.
- The experimental results (open) are compared with the simulation calculation (closed).
- The difference is due to uncertainty of the spectrometer acceptance, which can be converted into $\Omega\left(K_{\mu 2}\right) / \Omega\left(K_{e 2}\right)$ ratio uncertainty.
- The preliminary estimation is $\Delta R_{\kappa} / R_{\kappa} \sim 0.15 \%$

Systematic uncertainty: effect from wrong correction for the e^{+} interaction with target material

- Disappearance of e^{+}due to annihilati، bremsstrahlung emission, and knockon e^{-}. Red histogram is the $K_{e 2}$ simulation

- There are three causes of uncertainties. Preliminary estimations are:
- Input of wrong K^{+}stopping distribution to MC (<0.1\%)
- Imperfect reproducibility of MC for target assembly geometry ($\sim 0.1 \%$)
- Theoretical uncertainty of the adopted models in GEANT4 ($\sim 0.1 \%$)

Summary

- The J-PARC E36 experiment is searching for Lepton universality violation in K_{12} decays.
- The experiment was performed in 2015. Charged particle tracking, PID, CsI(TI) analysis, etc., have been established.
- New analysis results taking into account $K_{e 2}, K_{e 2 v}$, and $K_{e 3}$ decays were reported.
- Estimation of the E36 systematic uncertainties is in progress
- Reproducibility of the experimental condition by the Monte Carlo simulation for both charged particles and photons
- Effect from $\Omega\left(K_{\mu 2}\right) / \Omega\left(K_{e 2}\right)$ ratio uncertainty
- Uncertainty of the e^{+}interaction correction

Backup slides

Particle Identification by AC, PGC, and TOF

- Positrons are selected by aerogel Cherenkov (AC), lead-glass Cherenkov (PGC), and TOF PID detectors.
- The PID performance by combining the three detectors is now being optimized.
- In addition, a likelihood method will be introduced for further muon suppression.

Comparison experimental spectra with MC using $K_{\mu 2}$ decay events

Fiber target analysis for stopped $K^{+} s$
-The K^{+}life time curve was observed in the time interval spectrum of FC and TOF1. Prompt cut (Time>3ns) was applied to remove in-flight K^{+}decays (Before, target fiber timing was used).

- Lepton track was reconstructed from the hit TOF1 to the K^{+}clusters. Although about 20% events were rejected in this analysis, they can be recovered by introducing the new target code.
- Intersection point of the reconstructed track and K^{+}cluster is regarded to be K^{+} stopping position, which was obtained only using the target pattern information before.

