Results on LFV and on Dark Sector searches

gain

erc

Diego Martínez Santos

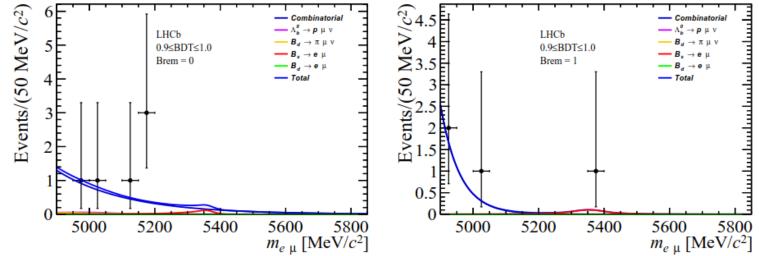
(Universidade de Santiago de Compostela & The European Research Council) On behalf of LHCb

Introduction

Show LHCb results from two separate topi

- Lepton Flavour Violation:
 - Forbidden in SM
 - Ridiculously small in SM + v mass
 - B→eµ, D→eµ, τ → µµµ, ...

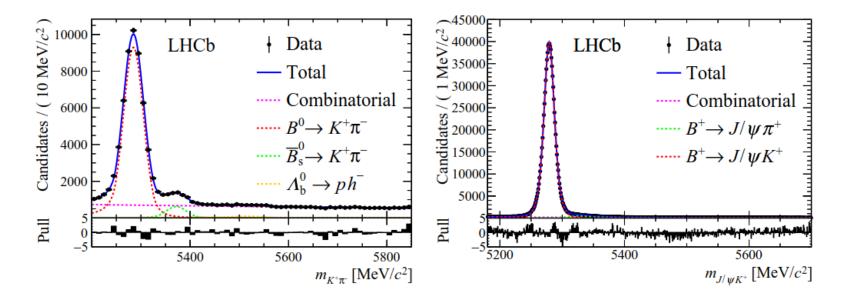
(Not to be confused with Lepton Universality Violation, eg., $B \rightarrow K^* \mu \mu / B \rightarrow K^* ee$)



- Direct searches for BSM bosons (Dark photons, HV pions, NMSSM higgses...)
- The results I'm going to show correspond to the following datasets
 - Run-I : 2011: 1fb⁻¹ @ 7 TeV , 2012: 2fb⁻¹ @ 8 TeV
 - Run-II: 1.6 fb⁻¹ @ 13 TeV

JHEP 1803 (2018) 078

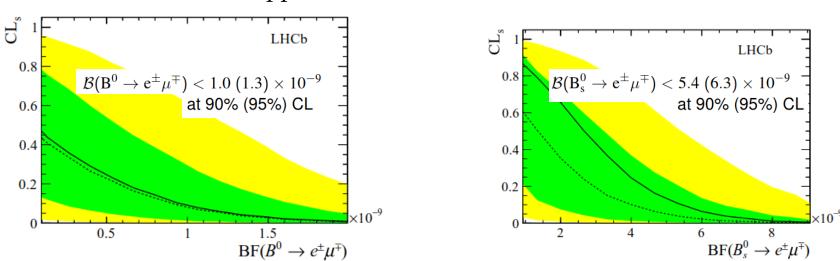
- LFV: $B_{(s)} \rightarrow e\mu$
- Run-I dataset
- Used BDT to discriminate from background
- Invariant mass fit in different bremsstrahlung categories



BDT most signal-like

LFV: $B_{(s)} \rightarrow e\mu$

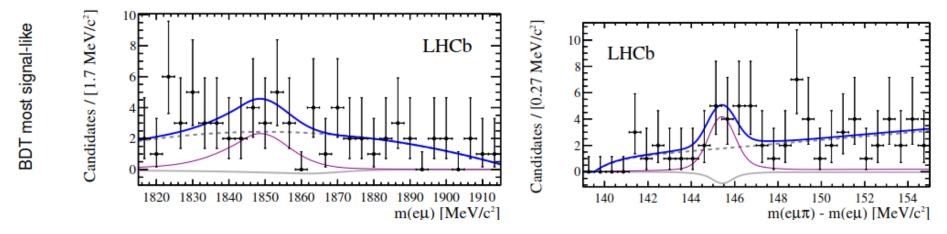
- Run-I dataset
- Used BDT to discriminate from background
- Invariant mass fit in different bremsstrahlung categories
- Normalization of the signal yield to B channels with known BR: $B^+ \rightarrow J/\psi K^+$, $B_d \rightarrow K \pi$



Diego Martinez Santos, HQL 2018

LFV: $B_{(s)} \rightarrow e\mu$

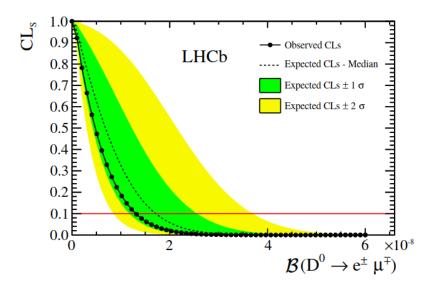
- Run-I dataset
- Used BDT to discriminate from background
- Invariant mass fit in different bremsstrahlung categories
- Normalization of the signal yield to B channels with known BR: $B^+ \rightarrow J/\psi K^+$, $B_d \rightarrow K\pi$
- Upper limit set with CLs



World best upper limits:

LFV: $D^0 \rightarrow e\mu$

- Run-I dataset
- Used BDT to discriminate from background
- $D^{0'}$ s are tagged from $D^{*\pm} \rightarrow D^0 \pi^{\pm}$ decays
- Invariant mass fit in different BDT categories, two mass variables: help discriminating against ~irreducible background from D⁰→пп
- Normalization of the signal yield to $D^0 \rightarrow K\pi$

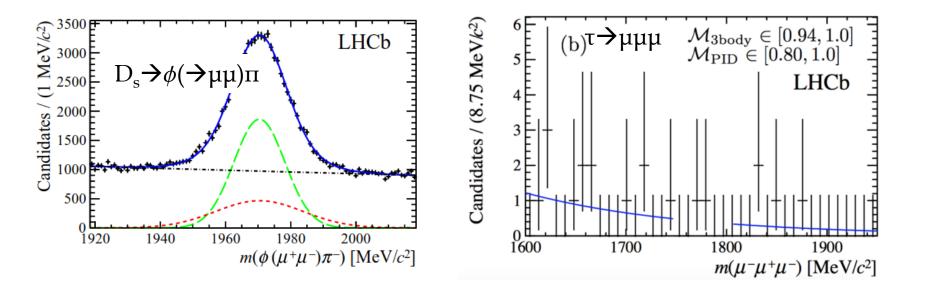


6

LFV: $D^0 \rightarrow e\mu$

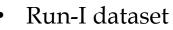
- Run-I dataset
- Used BDT to discriminate from background
- $D^{0'}$ s are tagged from $D^{*\pm} \rightarrow D^0 \pi^{\pm}$ decays
- Invariant mass fit in different BDT categories, two mass variables: help discriminating against ~irreducible background from D⁰→ΠΠ
- Normalization of the signal yield to $D^0 \rightarrow K\pi$
- Limit set with CLs

World best upper limit:

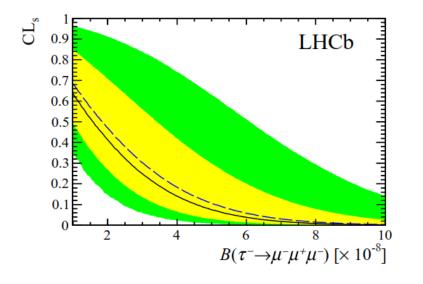

BR(D→eµ) < 1.3 (1.6) x 10⁻⁸

@90 (95)% CL

LFV: τ→μμμ


- Run-I dataset
- Used BDT to discriminate from background
- Classification of events in bins of 2 BDT's and µµµ mass
- Normalization of the signal yield to $D_s \rightarrow \phi(\rightarrow \mu \mu) \pi$
- Background estimate from sidebands

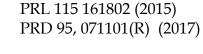
BR(τ →3 μ) < 4.6 (5.6) x 10⁻⁸ @ 90 (95)% CL

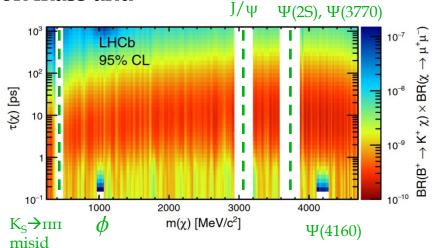

Competitive with Belle (2.1 x 10⁻⁸ @ 90%CL) PLB 687 (2010) 139

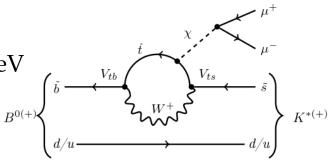
LHCb Upgrade (s) will explore the 10⁻⁹ region

LFV: $\tau \rightarrow \mu \mu \mu$

- Used BDT to discriminate from background
- Classification of events in bins of 2 BDT's and μμμ mass
- Normalization of the signal yield to $D_s \rightarrow \phi(\rightarrow \mu \mu) \pi$
- Background estimate from sidebands
- Limit set with CLs

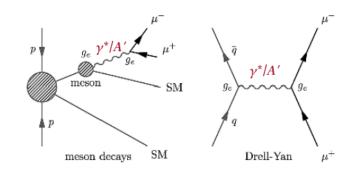



Diego Martinez Santos, HQL 2018


Hidden sector bosons from flavour decays

- Searches for BSM bosons (χ) in b \rightarrow sµµ transitions performed in full Run-I data
- Provide sensitivity in the region $\sim 2m_{\mu} < m\chi < \sim 4.7 \text{ GeV}$
- Lifetimes up to 1000 ps
- Upper limits for $B \rightarrow K\chi(\mu\mu)$ and $B \rightarrow K^*\chi(\mu\mu)$ are in the $10^{-10} 10^{-7}$ range, depending on the dimuon mass and the χ lifetime (analysis reoptimized)
- See talk by Preema Pais
- Similar searches possible in s \rightarrow dµµ, eg, $\Sigma \rightarrow$ pµµ

erc



PRL 120 (2018) no.6, 061801

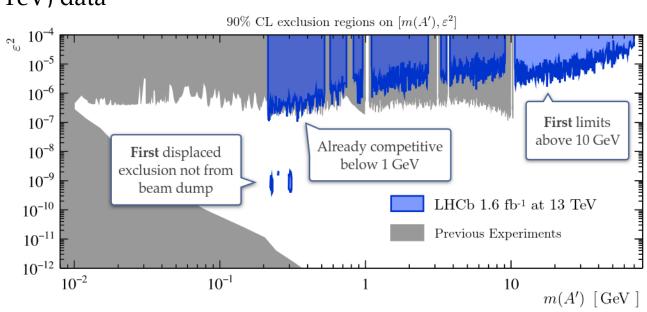
Dark photons

- Search for dark photons, that mix to offshell photons → shared production mechanism→ normalization to DY
- Uses dedicated "turbo" trigger: writes on tape only the relevant part of the event

Turbo trigger: Write on tape the relevant information of the event as measured online:

- + Advantage: Little event size \rightarrow afford higher output rate and hence efficiency
- + Disadvantage: Give up offline reconstruction quality, analysis reoptimizations

PRL 120 (2018) no.6, 061801


 γ^*/A'

Drell-Yan

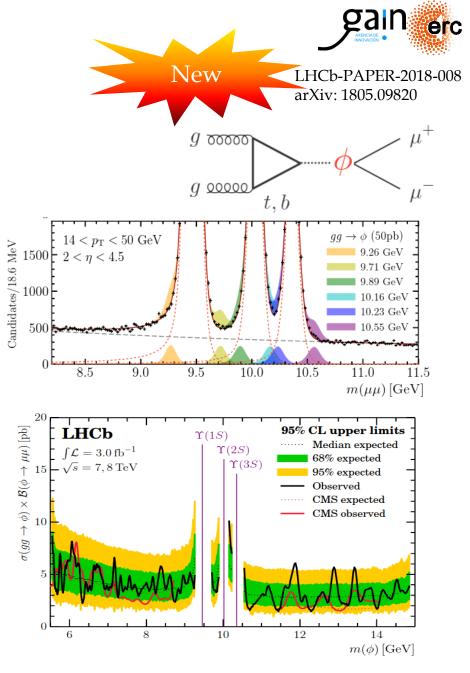
 μ^+

Dark photons

- Search for dark photons, that mix to offshell photons → shared production mechanism→ normalization to DY
- Uses dedicated "turbo" trigger: writes on tape only the relevant part of the event
- 1.6 fb⁻¹ of Run-II (13 TeV) data
- Prompt search up to m_Z
- Displaced search up to 350 MeV

meson

meson decays


p

SM

SM

BSM bosons from $gg \rightarrow \mu\mu$

- Search for a prompt dimuon resonance in the full Run-I data (supersedes preliminary result of Moriond EW)
- Statistically independent from the Dark Photon search → can be combined by recast searches)
- Search inspired in NMSSM, but done in bins of η, pt to easy interpretations in different models
- Good mass resolution of LHCb allows to explore closely the Y region
- No signal found, upper limits in σ x BR set (CLs). ~ 5 pb level

HV pions decaying to di-jets

- Signature: search for a displaced vertex with two b-jets (low efficiency to search for all 4)
- This signature is possible in Hidden Valley pions from SM Higgs decay
- Di-jet mass fit in bins of transverse displacement

LHCb

 $m_{\pi} = 50 \, \text{GeV/c}^2$

10

× $m_{\pi} = 35 \text{ GeV/c}^2, \pi_v \rightarrow c\bar{c}$

 $m_{\pi} = 35 \,\text{GeV/c}^2, \pi_v \rightarrow s\bar{s}$

e.g. for m_{π} = 50 GeV exclude

 10^{2}

Lifetime [ps]

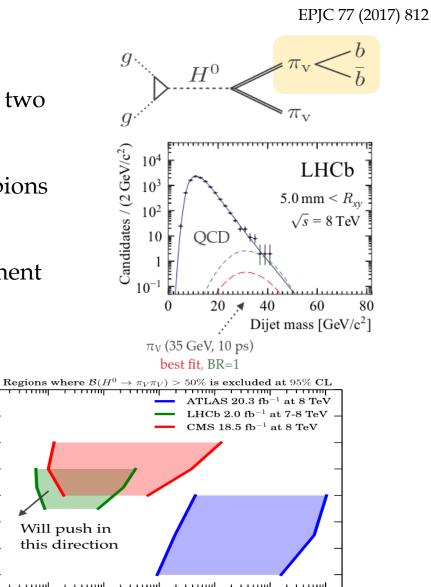
BR > 30% for $\tau = [5-50]$ ps

• 2 fb⁻¹ of Run-I data, @7 and 8 TeV.

= 25 GeV/c

 $= 35 \, \text{GeV/c}^2$

 $= 43 \text{ GeV/c}^2$


 $\pi_v \pi_v$

 $(\sigma/\sigma^{SM}_{gg \to H^0}) \cdot \mathcal{B}(H^0)$

10

 10^{-1}

 10^{-2}

 m_{π_V} [GeV/ c^2]

50 40

30

20

 10^{-1}

 10^{-1}

10

10

 $\pi_V c\tau [m]$

erc

Conclusions

- Presented upper limits for LFV processes: $B_{s,d} \rightarrow e\mu$, $D^0 \rightarrow e\mu$, $\tau \rightarrow \mu\mu\mu$
- Didn't cover ongoing/planned searches : $B_{s,d} \rightarrow \tau \mu$, $B_{s,d} \rightarrow K^{(*)}\tau \mu$, $B_{s,d} \rightarrow K^{(*)}e\mu$, as well as Λ_b decays...
- Several direct searches performed in LHCb:
 - Hidden sector light bosons produced in HF decays
 - Dark photons \rightarrow dimuon (13 TeV)
 - Prompt dimuons near the Y (Run-I)
 - Hidden Valley pions

F. Teubert, RnSII

LHCb

BR($\tau \rightarrow 3\mu$)x10⁻⁹

Lepton Flavour Violation

- LFV forbidden in SM, but allowed in BSM
 > positive signal is compelling NP discovery
 nil g
 LS2
- LHCb searches for LFV

Several world best results in hadron decays

	1fb⁻¹ (Phys. Rev. Lett. 111 (2013) 141801)	3fb⁻¹ (exp)	300fb ⁻¹ (exp)
B₅->e±μ∓	< 1.4x10 ⁻⁸ @ 90% CL	~3.8x10-9	~3x10 ⁻¹⁰
B->e±µ∓	< 3.7x10 ⁻⁹ @ 90% CL	~1.2x10 ⁻⁹	~1x10 ⁻¹⁰

τ→3µ Phase-II competitive w/ Belle II

B→Keµ → expected O(10⁻⁹) for Phase - II