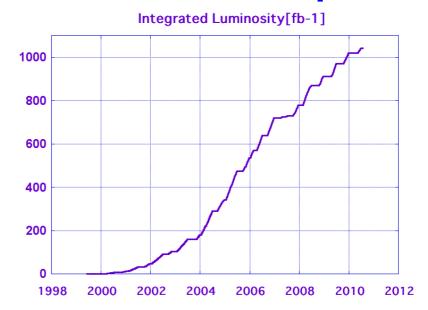
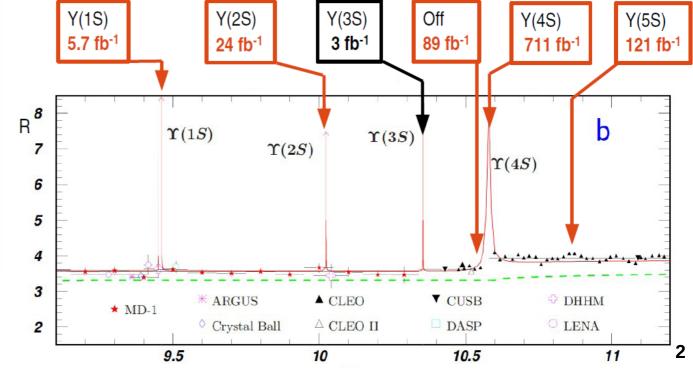


Pavel Krokovny
Budker Institute of Nuclear Physics
and
Novosibirsk State University


Outline

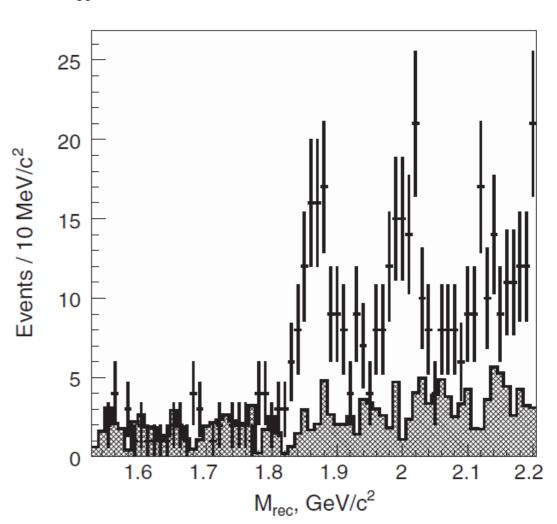

- Introduction
- Observation of $\chi_{c0}(2P)$ candidate in $e^+e^- \rightarrow J/\psi D\overline{D}$
- $\eta_c(1S)$, $\eta_c(2S)$ and $\eta \pi^+\pi^-$ production via two-photon collisions
- Search for $\Upsilon(1S,2S) \rightarrow Z_c^+ Z_c^{(\prime)}$
- Search for light tetraquark states in $\Upsilon(1S,2S)$ decays
- Study of $\Upsilon(4S,5S)$ transitions to lower bottomonia via $\eta^{(\cdot)}$

Summary

Superconducting cavities (HER) REKB B-Factory ARES copper cavities (HER) ARES copper cavities (LER) TRISTAN tunnel 8 GeV e- 3.5 GeV e+ Linac e+ target

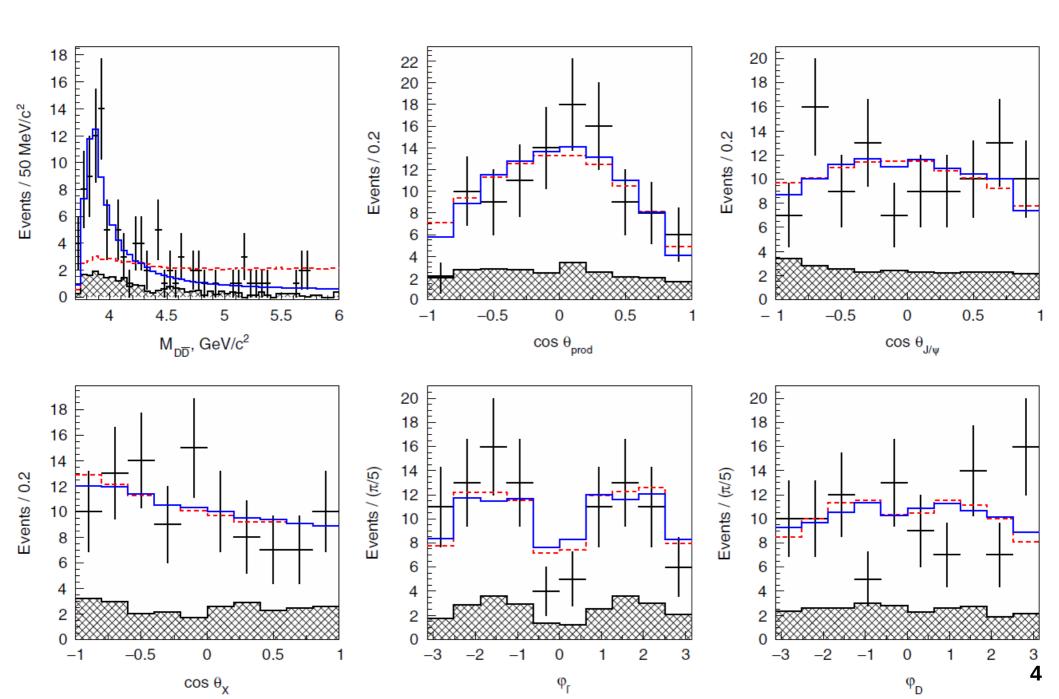
The Belle experiment

Observation of $\chi_{c0}(2P)$ in $e^+e^- \rightarrow J/\psi DD$


X(3915) was observed by the Belle in B \rightarrow J/ψωK decays. J^{PC} is measured to be 0⁺⁺. As a result, it was identified as the $\chi_{co}(2P)$ in PDG 2014.

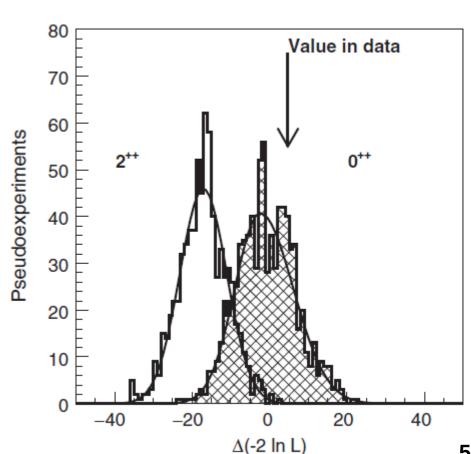
Doubts: expected main decay $\chi_{c0}(2P) \rightarrow D\overline{D}$ in an S-wave.

We search for $e^+e^- \rightarrow J/\psi \chi_{c0}(2P)$ with $\chi_{c0}(2P) \rightarrow D\overline{D}$


Only J/ ψ and one of the D mesons are reconstructed; the other \overline{D} meson is identified by the recoil mass of the J/ ψ D system.

- D⁺ \rightarrow K⁰_S π^+ , K⁻ $\pi^+\pi^+$, K⁰_S $\pi^+\pi^0$, K⁻ $\pi^+\pi^+\pi^0$, and K⁰_S $\pi^+\pi^+\pi^-$.
- $D^0 \to K^-\pi^+$, $K^0_S \pi^+\pi^-$, $K^-\pi^+\pi^0$, and $K^-\pi^+\pi^+\pi^-$.
- $J/\psi \to e^+e^-, \ \mu^+\mu^-.$

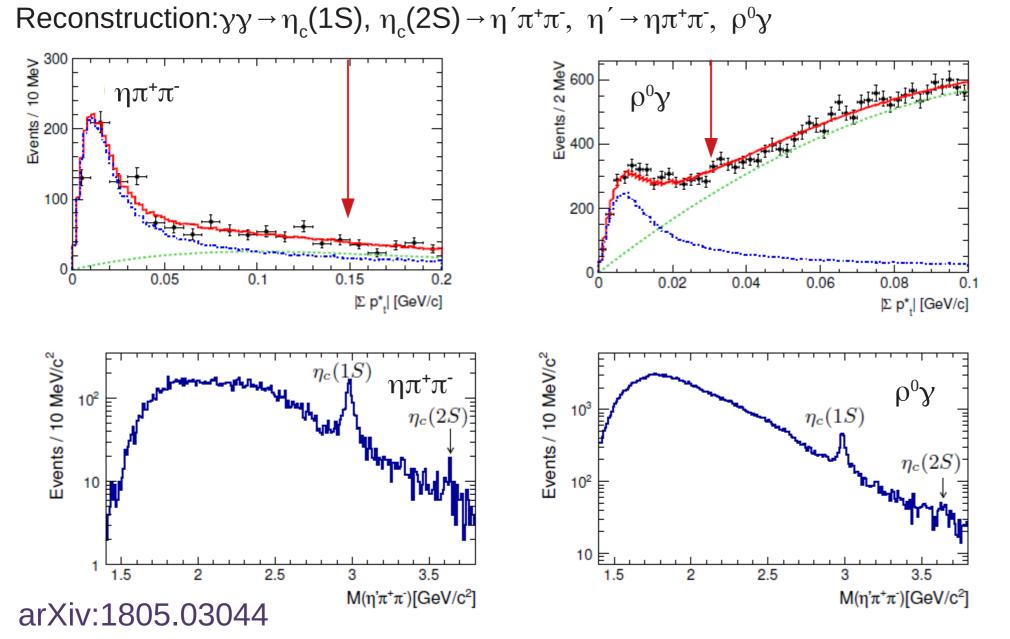
Observation of $\chi_{c0}(2P)$ in $e^+e^- \rightarrow J/\psi DD$



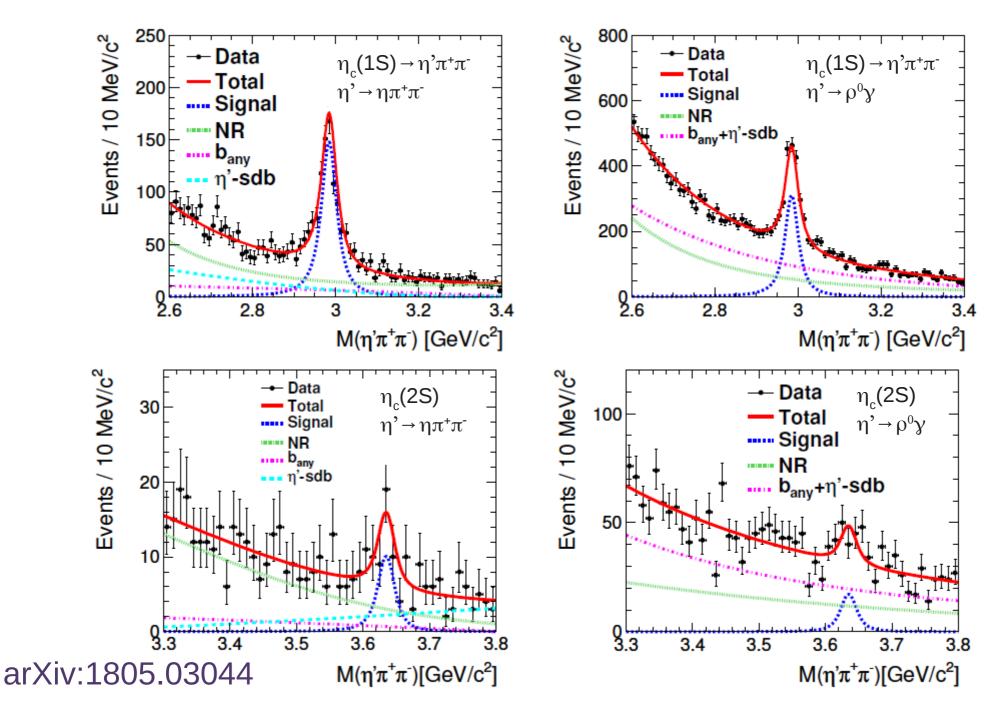
Observation of $\chi_{c0}(2P)$ in $e^+e^- \rightarrow J/\psi DD$

- A new charmoniumlike state, the X*(3860) is observed, with mass of $3862^{+26}_{-32}^{+40}_{-13}$ MeV/c², and width $201^{+154}_{-67}^{+88}_{-82}$ MeV.
- The J^{PC} 0⁺⁺ is preferable, from 2⁺⁺ at the level of 2.5 σ .

- X*(3860) consistent with $\chi_c^0(2P)$ charmonium state hypotheses.
- The measured mass is close to potential model expectations for the $\chi_{co}(2P)$.



$\gamma\gamma \rightarrow \eta_c(1S)$, $\eta_c(2S)$ and $\eta' \pi^+\pi^-$


Motivation: improve measurement of $\eta_c(1S)$ parameters, measure Γ_{yy} for $\eta_c(2S)$

$\gamma\gamma \rightarrow \eta_c(1S)$, $\eta_c(2S)$ and $\eta' \pi^+\pi^-$

$\gamma\gamma \rightarrow \eta_c(1S)$, $\eta_c(2S)$ and $\eta' \pi^+\pi^-$

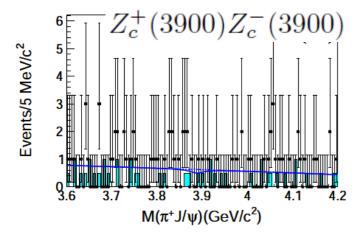
	$\eta_c($	1S)	$\eta_c(2S)$			
	γho	$\eta\pi^+\pi^-$	γho	$\eta\pi^+\pi^-$		
n_s	1728^{+69}_{-68}	945^{+38}_{-37}	65^{+14}_{-13}	41^{+9}_{-8}		
$M (\mathrm{MeV}/c^2)$			3635.1	$\pm 3.7 \pm 2.9$		
$\Gamma ({\rm MeV})$	30.8^{+2}_{-2}	$\frac{3}{2} \pm 2.5$		[fixed]		
$\Gamma_{\gamma\gamma}\mathcal{B} \text{ (eV)}$	65.4 ± 2	2.6 ± 6.9	5.6^{+}_{-}	$^{1.2}_{1.1} \pm 1.1$		

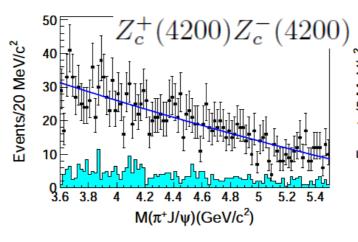
First observation of

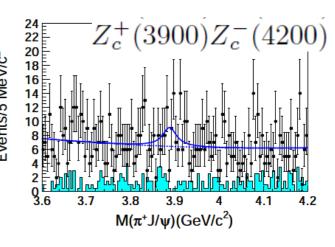
$$\eta_c(2S) \rightarrow \eta' \pi^+ \pi^-$$

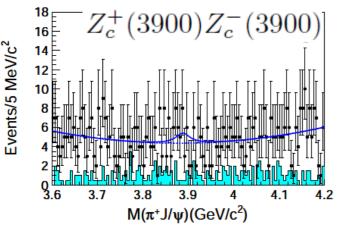
New decay mode $\eta_c(1S) \rightarrow \eta' \ f^0(2080)$ $f^0(2080) \rightarrow \pi^+\pi^-$

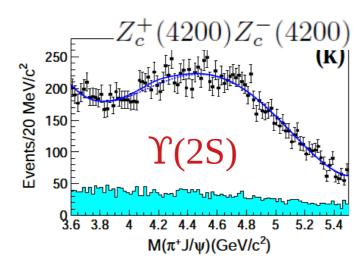
Search for $e^+e^- \rightarrow Z_c^+ Z_c^-$

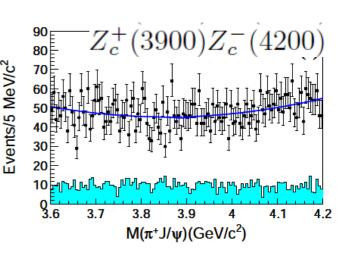

Reconstruct only one Z_c :


 $Z_c^+(4050), Z_c^+(4250) \rightarrow \pi^+ \chi_{c1}(1P),$


Then check recoil mass for other Z_c .


 $Z_c^+(3900), Z_c^+(3900) \rightarrow \pi^+ J/\psi,$ $Z_c^+(4050), Z_c^+(4430) \rightarrow \pi^+ \psi(2S)$

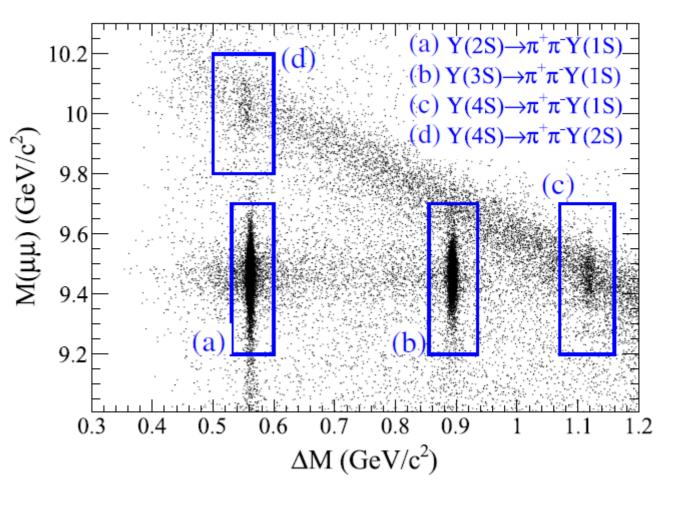

 $\Upsilon(5S)$



Search for $e^+e^- \rightarrow Z_c^+ Z_c^-$

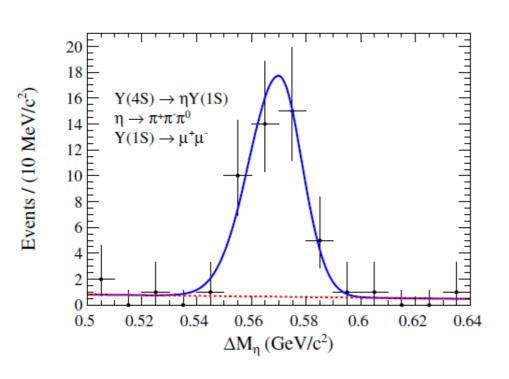
											DL	
Mode	$N^{ m fit}$	N^{UL}	ε (%)	$\begin{bmatrix} \Sigma \\ (\sigma) \end{bmatrix}$	$\sigma_{ m syst}$ (%)	$\mathcal{B}(Z)$		$ o Z_c^+ Z_c^{(\prime)-}) + \chi_{c1}(1P)/\pi^+$		$\mathcal{B}^{\mathrm{UL}}(\Upsilon o Z)$ $\mathcal{B}(Z_c^+ o \pi^+ \chi_{c1})$	$(1P)/\pi^{+}$	${\times}$
$\Upsilon(1S) \to Z_{c1}^+(4050)Z_{c1}^-(4050)$	-2.1 ± 7.2	2 13.1	, ,	1 1	41.3	2(2		$\frac{\chi_{c1}(11)/\pi}{-2.4 \pm 8.1}$	ψ(25))	$\frac{\mathcal{L}(\mathcal{L}_c) \wedge \mathcal{L}(\mathcal{L}_c)}{15}$		φ(25))
, , , , , , , , , , , , , , , , , , , ,				1 1								
$\Upsilon(1S) \to Z_{c2}^+(4250)Z_{c2}^-(4250)$	$-8.3 \pm 14.$		20.9	1 1	34.5			-9.7 ± 16.8		26		
$\Upsilon(1S) \to Z_{c1}^+(4050)Z_{c2}^-(4250) + c.c.$	$-1.3 \pm 10.$		10.1	1 1	25.9		-	-3.1 ± 24.3		44.	.2	
$\Upsilon(2S) \to Z_{c1}^+(4050)Z_{c1}^-(4050)$	2.9 ± 7.7	16.4	20.5	0.2	38.7			2.2 ± 5.9	2.2 ± 5.9		13.5	
$\Upsilon(2S) \to Z_{c2}^{+}(4250)Z_{c2}^{-}(4250)$	8.1 ± 15.8	32.6	19.2	0.5	34.0			6.6 ± 13.2		26.	.7	
$\Upsilon(2S) \to Z_{c1}^+(4050)Z_{c2}^-(4250) + c.c.$	$-6.3 \pm 10.$	$5 \mid 16.1 \mid$	9.4	-	18.0		-	-10.5 ± 17.6	- 10-6	27.	2	1 0 -6
$\Upsilon(1S) \to Z_c^+(4050)Z_c^-(4050)$	6.7 ± 5.3	14.4	16.0	1.4	16.4			10.0 ± 8.1	_ 10 ,	23.	.3	10^{-6}
$\Upsilon(1S) \to Z_c^+(4430)Z_c^-(4430)$	-1.5 ± 7.6	13.6	16.2	2 -	22.0		-	-2.2 ± 11.3		20.	.3	
$\Upsilon(1S) \to Z_c^+(4050)Z_c^-(4430) + c.c.$	4.4 ± 5.7	14.3	7.7	0.8	28.8			13.6 ± 18.1		45.	.5	
$\Upsilon(2S) \to Z_c^+(4050)Z_c^-(4050)$	-1.9 ± 6.4	10.8	15.1	. -	16.1			-1.9 ± 6.6		11.	1	
$\Upsilon(2S) \to Z_c^+(4430)Z_c^-(4430)$	3.4 ± 9.6	20.0	15.3	0.3	17.8	7.8 3.4 ± 9.7		20.	20.3			
$\Upsilon(2S) \to Z_c^+(4050)Z_c^-(4430) + c.c.$	-4.9 ± 6.2	10.2	7.5	-	26.1		_	-10.1 ± 13.1		21.	1	
									n/ ==	THI.	10 / 17	
Mode	\sqrt{s}	$N^{ m fit}$		N^{UL}	ε	Σ	$\sigma_{ m syst}$		$\mathcal{B}(Z_{c}^{+})$		$\times \mathcal{B}(Z_c^+$	
	(GeV)	-11		- 1	(%)	(σ)	(%)	$\rightarrow \pi^+ \chi_{c1}(1R)$	$P)/\pi^+\psi$	$(2S)) \rightarrow \pi^+ \chi_{c1}($	$(1P)/\pi^{+}$	$\psi(2S))$
$e^+e^- \to Z_{c1}^+(4050)Z_{c1}^-(4050)$	10.52	$1.2 \pm 6.$.5	13.2	20.9	0.2	28.3	2.3 ±	12.4		25.0	
$e^+e^- \to Z_{c2}^+(4250)Z_{c2}^-(4250)$		0.9 ± 16	6.8	65.1	19.4	2.6	32.9	83.9 =	± 44.1		143.9	
$e^+e^- \to Z_{c1}^+(4050)Z_{c2}^-(4250) + c.c.$	10.52	5.2 ± 10	.4	21.5	9.5	0.5	33.0	21.7	± 44.1		93.2	
$e^+e^- \rightarrow Z_{c1}^+(4050)Z_{c1}^-(4050)$		4.1 ± 18.9		36.3	20.5	0.2	21.9	1.0 =	± 4.6		8.8	
$e^{+}e^{-} \rightarrow Z_{c2}^{+}(4250)Z_{c2}^{-}(4250)$	10.58	35.2 ± 4	18.3	25.7	19.2	-	45.8	-9.0	± 13.1		7.1	

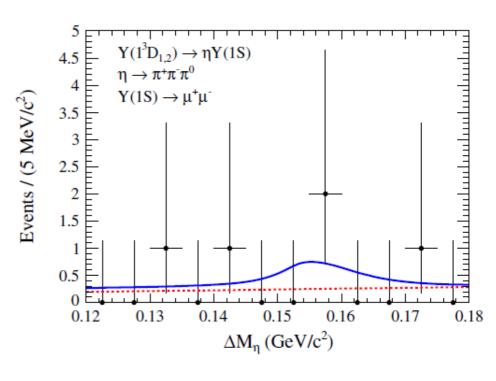
$e^+e^- \to Z_{c2}^+(4250)Z_{c2}^-(4250)$	10.52	40.9 ± 16.8	65.1	19.4	2.6	32.9	83.9 ± 44.1	143.9	
$e^+e^- \to Z_{c1}^+(4050)Z_{c2}^-(4250) + c.c.$	10.52	5.2 ± 10.4	21.5	9.5	0.5	33.0	21.7 ± 44.1	93.2	
$e^+e^- \rightarrow Z_{c1}^+(4050)Z_{c1}^-(4050)$	10.58	4.1 ± 18.9	36.3	20.5	0.2	21.9	1.0 ± 4.6	8.8	
$e^{+}e^{-} \rightarrow Z_{c2}^{+}(4250)Z_{c2}^{-}(4250)$	10.58	-35.2 ± 48.3	25.7	19.2	-	45.8	-9.0 ± 13.1	7.1	
$e^+e^- \to Z_{c1}^+(4050)Z_{c2}^-(4250) + c.c.$	10.58	-18.0 ± 24.8	34.5	9.8	-	45.0	-9.1 ± 13.2	18.2	
$e^{+}e^{-} \rightarrow Z_{c1}^{+}(4050)Z_{c1}^{-}(4050)$	10.867	8.6 ± 8.5	23.0	19.4	1.0	26.0	12.9 ± 13.2	35.7	
$e^{+}e^{-} \rightarrow Z_{c2}^{+}(4250)Z_{c2}^{-}(4250)$	10.867	27.7 ± 16.1	49.5	18.5	1.7	27.0	43.6 ± 28.0	82.0	
$e^+e^- \to Z_{c1}^+(4050)Z_{c2}^-(4250) + c.c.$	10.867	-17.5 ± 8.6	9.4	9.1	-	28.5	$\frac{-55.7 \pm 31.6}{1}$ n	30.8	nb
$e^+e^- \to Z_c^+(4050)Z_c^-(4050)$	10.52	9.4 ± 15.5	18.1	15.0	1.1	23.4	24.5 ± 40.8	47.7	IIU
$e^+e^- \to Z_c^+(4430)Z_c^-(4430)$	10.52	-9.7 ± 8.4	10.5	15.0	-	16.9	-25.3 ± 22.3	29.7	
$e^+e^- \to Z_c^+(4050)Z_c^-(4430) + c.c.$	10.52	6.5 ± 7.2	18.7	7.5	0.9	17.3	33.9 ± 38.0	97.9	
$e^+e^- \to Z_c^+(4050)Z_c^-(4050)$	10.58	7.7 ± 9.3	23.5	15.0	0.7	16.5	2.5 ± 3.0	7.6	
$e^+e^- \to Z_c^+(4430)Z_c^-(4430)$	10.58	-60.5 ± 27.8	22.9	14.6	-	12.7	-20.1 ± 9.6	8.3	
$e^+e^- \to Z_c^+(4050)Z_c^-(4430) + c.c.$	10.58	22.8 ± 17.2	48.5	7.3	1.3	19.5	15.1 ± 11.8	32.2	
$e^+e^- \to Z_c^+(4050)Z_c^-(4050)$	10.867	-8.0 ± 3.4	5.2	14.2	-	20.8	-16.1 ± 7.6	10.8	
$e^+e^- \to Z_c^+(4430)Z_c^-(4430)$	10.867	2.7 ± 8.2	16.7	14.0	0.3	22.1	5.5 ± 16.7	35.2	10
$e^+e^- \to Z_c^+(4050)Z_c^-(4430) + c.c.$	10.867	-3.7 ± 5.7	9.1	7.0	-	21.1	-15.1 ± 23.4	39.1	10


Study of η and dipion transitions in $\Upsilon(4S)$ decays to lower bottomonia

Motivation: QCD multipole model predicts high suppression of bottomonia transitions via η due to spin flip of heavy quark. However tis is not cosistent with experimental data.

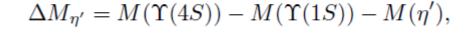
Final state: $\mu^+\mu^-\pi^+\pi^-$

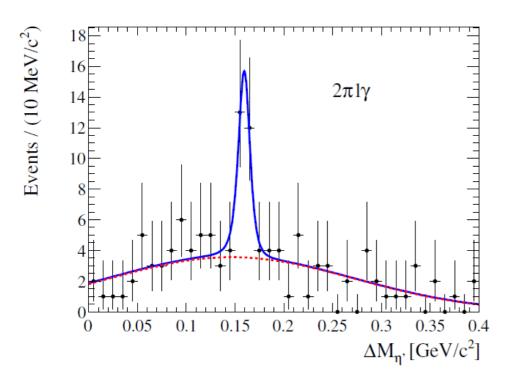

Signal selection: $M(\mu^+\mu^-)$ and $\Delta M = M(\mu^+\mu^-\pi^+\pi^-)-M(\mu^+\mu^-)$

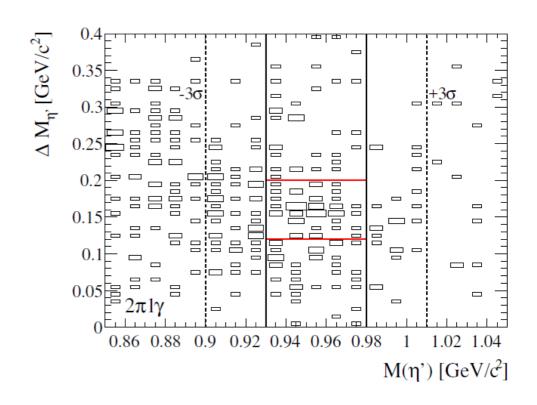


Br(
$$\Upsilon(4S) \to \pi^+\pi^-\Upsilon(1S)$$
) = $(8.2 \pm 0.5 \pm 0.4) \times 10^{-5}$
Br($\Upsilon(4S) \to \pi^+\pi^-\Upsilon(2S)$) = $(7.9 \pm 1.0 \pm 0.4) \times 10^{-5}$

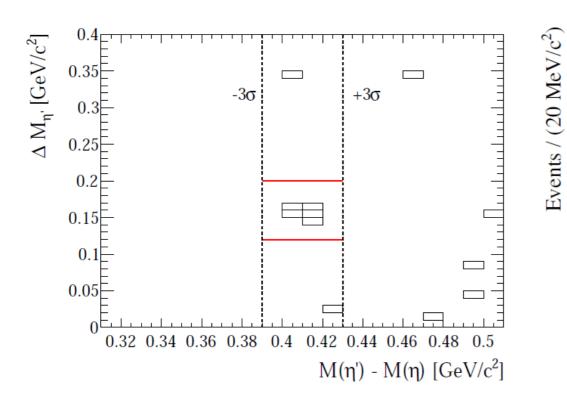
Study of η and dipion transitions in $\Upsilon(4S)$ decays to lower bottomonia

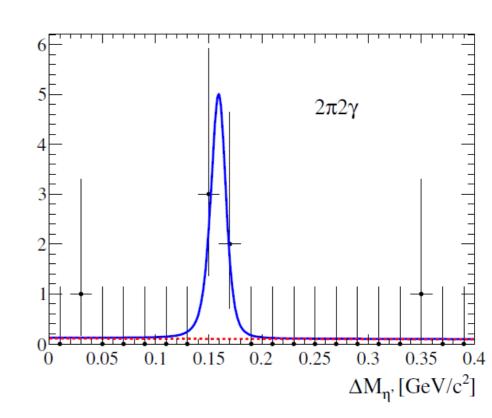

Measurement	Result	PDG value [17]
$\mathcal{B}(\Upsilon(4S) \to \pi^+\pi^-\Upsilon(1S))$	$(8.2 \pm 0.5 \pm 0.4) \times 10^{-5}$	$(8.1 \pm 0.6) \times 10^{-5}$
$\mathcal{B}(\Upsilon(4S) \to \pi^+\pi^-\Upsilon(2S))$	$(7.9 \pm 1.0 \pm 0.4) \times 10^{-5}$	$(8.6 \pm 1.3) \times 10^{-5}$
$\mathcal{B}(\Upsilon(4S) \to \eta \Upsilon(1S))$	$(1.70 \pm 0.23 \pm 0.08) \times 10^{-4}$	$(1.96 \pm 0.28) \times 10^{-4}$
\mathcal{R} as in Eq. (1)	$2.07 \pm 0.30 \pm 0.11$	2.41 ± 0.42




Observation of $\Upsilon(4S) \rightarrow \eta' \Upsilon(1S)$

- $Y(1S) \to \mu^+ \mu^-$.
- $\eta' \rightarrow \eta \pi^+ \pi^-$, $\rho^0 \gamma$

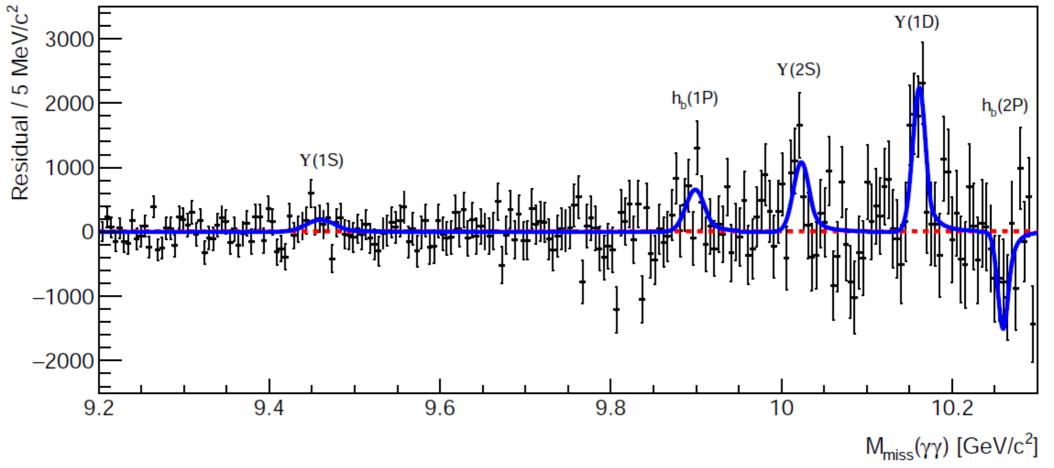




Observation of $\Upsilon(4S) \rightarrow \eta' \Upsilon(1S)$

B(Y(4S)
$$\rightarrow \eta$$
 'Y(1S)) = (3.43 \pm 0.88 \pm 0.21) 10⁻⁵

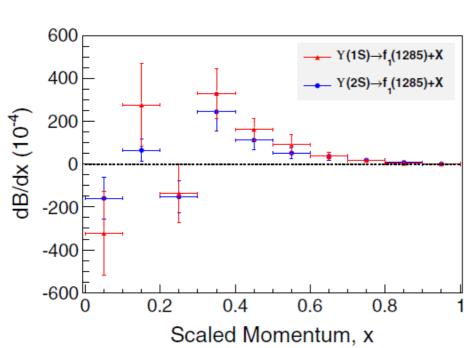
$$R_{\eta'/h} = \frac{\mathcal{B}(\Upsilon(4S) \to \eta' \Upsilon(1S))}{\mathcal{B}(\Upsilon(4S) \to h \Upsilon(1S))}$$


$$R_{\eta'/\eta} = 0.20 \pm 0.06$$

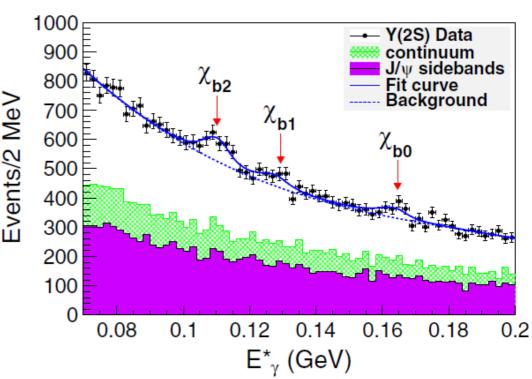
 $R_{\eta'/\pi^+\pi^-} = 0.42 \pm 0.11$

arXiv:1803.10303

Inclusive study $\Upsilon(5S) \rightarrow \eta$ bb


Process	Σ	$N_{ m meas}[10^3]$	ϵ [%]	σ_v [pb]	$1 + \delta_{\mathrm{ISR}}$	σ_B [pb]
$e^+e^- \to \eta \Upsilon(1S)$	1.5σ	1.7 ± 1.0	20.1	< 0.34	0.644 ± 0.007	< 0.49
$e^+e^- \to \eta h_b(1P)$	2.7σ	3.9 ± 1.5	22.2	< 0.52	0.644 ± 0.007	< 0.76
$e^+e^- \to \eta \Upsilon(2S)$	3.3σ	5.6 ± 1.6	16.5	$0.70 \pm 0.21 \pm 0.12$	0.644 ± 0.007	$1.02 \pm 0.30 \pm 0.17$
$e^+e^- \to \eta \Upsilon(1D)$	5.3σ	9.3 ± 1.8	17.2	$1.14 \pm 0.22 \pm 0.15$	0.643 ± 0.006	$1.64 \pm 0.31 \pm 0.21$
$e^+e^- \to \eta h_b(2P)$	_	-5.2 ± 3.6	16.7	< 0.44	0.636 ± 0.005	< 0.64

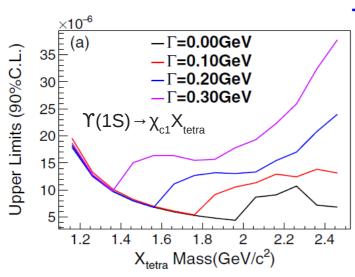
Search for light tetraquark states in $\Upsilon(1S,2S)$ decays

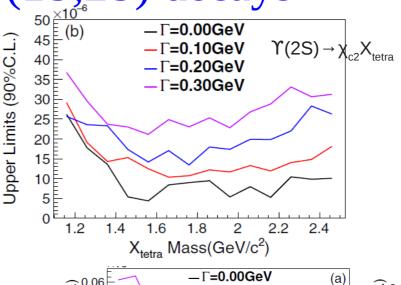


- The Dalitz analysis of the decay $D^0 \to \pi^+\pi^-\pi^0$ indicates the existence of exotic state decaying into a $\rho\pi$ final state with J^{PC} 0-, at a mass of 1865 MeV/c², can not be explained as qq
- Search for $J^{PC} = 0^{-1}$ and 1^{+1} teraqurk states X_{tetra} in

 Υ (1S,2S) decays to $\chi_{c1} X_{tetra}$ and f_1 (1285) X_{tetra}

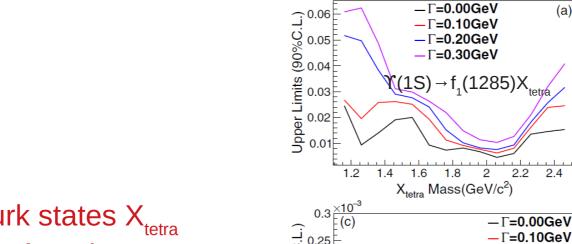
 χ_{b1} decays to J/ ψ X_{tetra} and ω X_{tetra}.

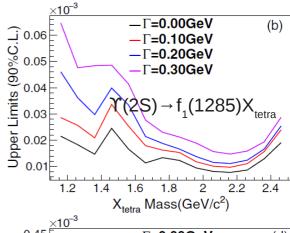



$$\begin{split} &B(\Upsilon(1S) \to f_1(1285) \text{ anything}) = (46 \pm 28 \pm 13) \ 10^{-4}, \ B(\Upsilon(2S) \to f_1(1285) \text{ anything}) = (22 \pm 15 \pm 6.3) \ 10^{-4}, \\ &B(\chi_{b2} \to J/\psi \text{ anything}) = (15 \pm 3.4 \pm 2.2) \ 10^{-4}, \qquad B(\chi_{b2} \to \omega \text{ anything}) = (490 \pm 130 \pm 60) \ 10^{-4}, \\ &B(\chi_{b0} \to J/\psi \text{ anything}) < 23 \ 10^{-4} \ 90\% \ CL, \qquad B(\chi_{b1} \to J/\psi \text{ anything}) < 11 \ 10^{-4} \ 90\% \ CL \end{split}$$

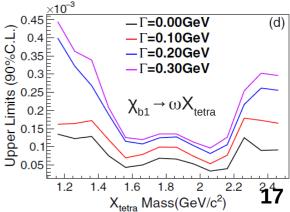
Phys.Rev.D96 112002 (2017)

Search for light tetraquark states in $\Upsilon(1S,2S)$ decays








2.2

2.4

No teraqurk states X_{tetra} have been found

Phys.Rev.D96 112002 (2017)

Summary

- Observation of charmonium-like state $X^*(3860)$, consistent with $\chi_{c0}(2P)$
- Measurement of $\eta_c(1S,2S)$ and $\eta_{\pi^+\pi^-}$ production via two-photon collisions.
- First observation of $\eta_c(2S) \rightarrow \eta' \pi^+ \pi^-$ and $\eta_c(1S) \rightarrow \eta' \ f^0(2080) \rightarrow \eta' \ \pi^+ \pi^-$
 - No signal have been found for $e^+e^- \rightarrow Z_c^+ Z_c^-$
- Measurement of branching fraction $\Upsilon(4S) \rightarrow \eta \Upsilon(1S)$
- Observation of $\Upsilon(4S) \rightarrow \eta' \Upsilon(1S)$
 - Observation of $\Upsilon(5S) \to \eta \Upsilon(1D)$ decays in inclusive study
 - No light tetraquark states have been found in $\Upsilon(1S,2S)$ decays

More exciting results are going to come from Belle II.