

Precise measurement of absolute flux and spectrum of reactor neutrinos at Daya Bay

Miao HE on behalf of the Daya Bay collaboration

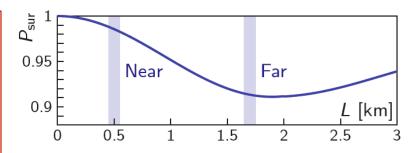
Institute of High Energy Physics, Chinese Academy of Sciences

XIV International Conference on

Heavy Quarks and Leptons

May 27 - June 1, 2018, Yamagata Terrsa, Yamagata, Japan

Reactor neutrinos and detection


Nuclear power plants as powerful sources – Electron antineutrinos ($\bar{\nu}_e$) from β decays - Averaged 6 $\bar{\nu}_e$ per fission $- 6 \times 10^{20} \bar{\nu}_e$ /sec/3 GW_{th} From wiki 1 Detected by inverse beta decay (IBD) with a pair of coincidence signals 2 **Prompt signal** gamma $e^+ + e^- \rightarrow 2\gamma$ $\overline{\nu}_e + p \longrightarrow e^+ + n$ neutron 3 Capture on H or **Gd**, Delayed signal, 2.2 or 8 MeV From wiki

Daya Bay experiment

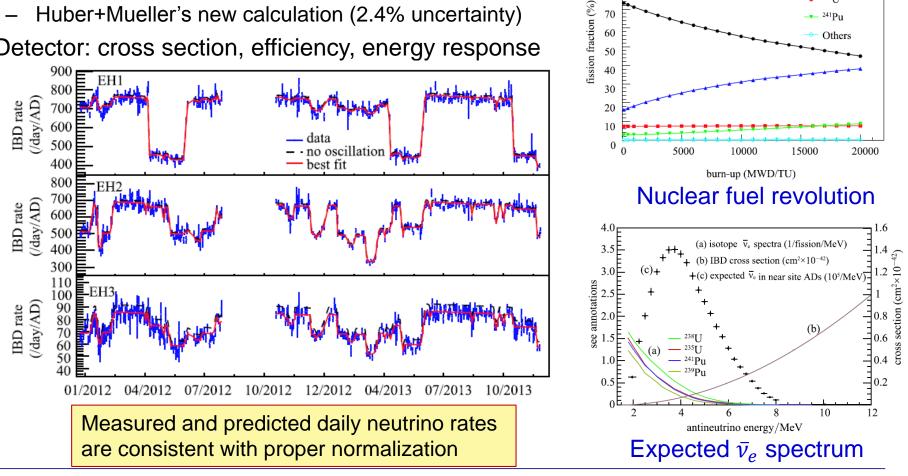
- Reactor thermal power: 2.9 GW×6=17.4 GW
- Detector target mass: 20 ton × 8=160 ton
- Relative rate deficit and spectrum distortion between far and near detectors to extract θ_{13}
- Absolute efficiency and detector response with oscillation correction to measure reactor neutrino flux and spectrum
- Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay PRL 116, 061801 (2016)
- Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay CPC 41, 1, 013002 (2017)
- Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay PRL 118, 251801 (2017)

- Flux-weighted baseline
 - Near detectors: 560m-600m
 - Far detectors: 1640m

Ling Ao

Ling Ao II

Prediction of flux and spectrum


100

90

80

70

- Reactor: power, fission fraction, non-equilibrium, spent fuel
- Isotope neutrino spectrum:
 - ILL measurement and Vogel calculation (2.7% uncertainty)
 - Huber+Mueller's new calculation (2.4% uncertainty)
- Detector: cross section, efficiency, energy response

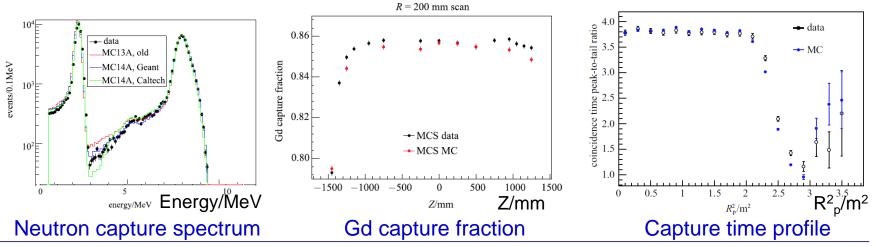
M.He: Reactor antineutrino flux and spectrum at Daya Bay

← ²³⁵U

239Pu

238I I

²⁴¹Pu



Absolute efficiency

• Careful MC tuning, good agreement with data

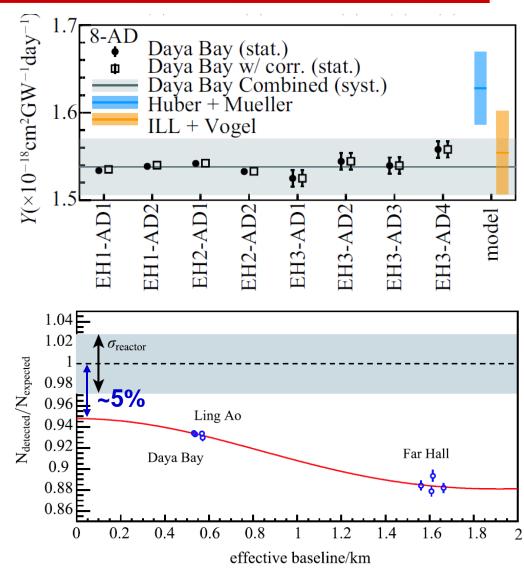
		S /
source	ϵ	$\delta\epsilon/\epsilon$
target protons		0.92%
flasher cut	99.98%	0.01%
capture time cut	98.70%	0.12%
prompt energy cut	99.81%	0.10%
Gd capture fraction	84.17%	0.95%
nGd detection efficiency	92.71%	0.97%
spill-in correction	104.86%	1.00%
combined	80.60%	1.93%

Related to Gd concentration, neutron propagation and neutron captured gamma spectrum

Neutrino flux measurement

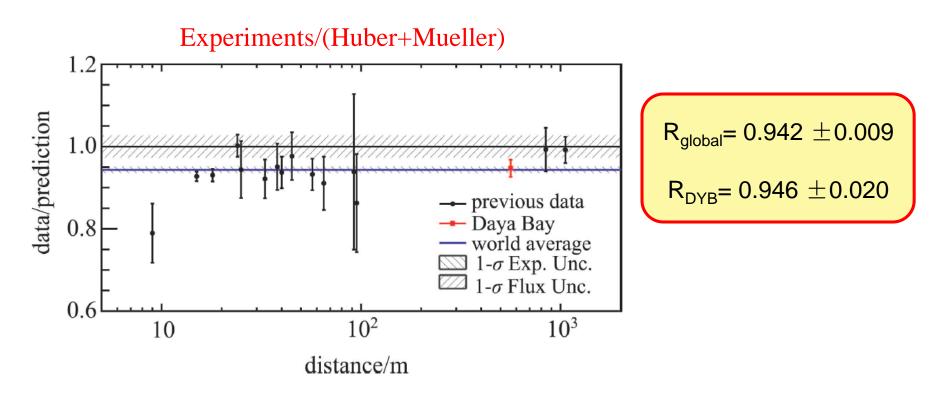
Near detectors measurement

 $Y_0 = (1.53 \pm 0.03) \times 10^{-18} \text{cm}^2/\text{GW/day}$ $\sigma_f = (5.91 \pm 0.12) \times 10^{-43} \text{ cm}^2/\text{fission}$


Comparison to flux models

Data/Prediction (ILL+Vogel) 0.992 \pm 0.021

Data/Prediction (Huber+Mueller) 0.946 ± 0.020: ~5% deficit


Flux-weighted average fission fractions

²³⁵ U	²³⁸ U	²³⁹ Pu	²⁴¹ Pu
0.561	0.076	0.307	0.056

Comparison with past experiments

- Daya Bay's flux is consistent with previous short baseline experiments: ~5% deficit, known as "*Reactor Antineutrino Anomaly*".
- Either uncertainty of the reactor model is underestimated, or an additional oscillation with eV-mass-scale sterile neutrinos.

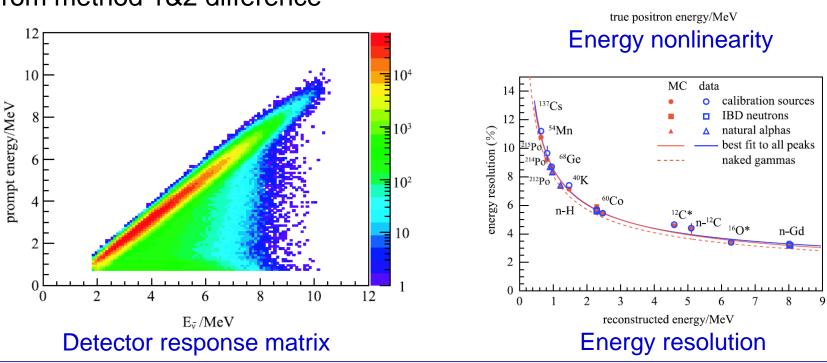
Detector response

1.0

1.0

1.00

0.98


0.96

0.94

0.92

recontructed energy/true energy

- Method 1: Geant4 based MC simulation tuned with data
- Method 2: analytical calculation with input from data
- Additional uncertainty below 1.25 MeV from method 1&2 difference

M.He: Reactor antineutrino flux and spectrum at Daya Bay

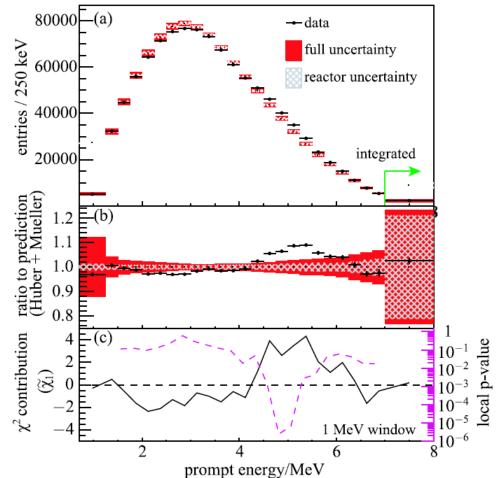
10

<1% uncertainty

nominal response+68.3%C.L

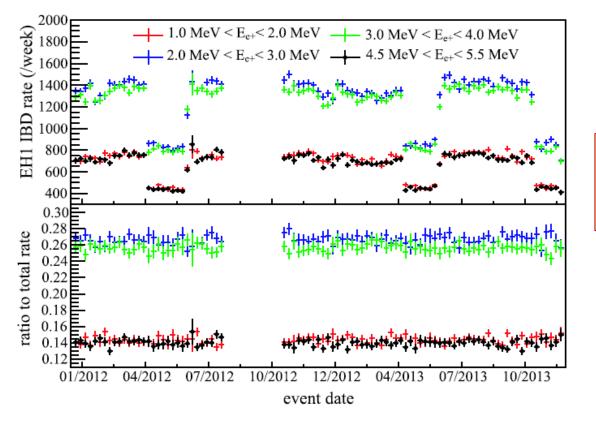
above 2 MeV

Prompt spectrum measurement


• χ^2 definition

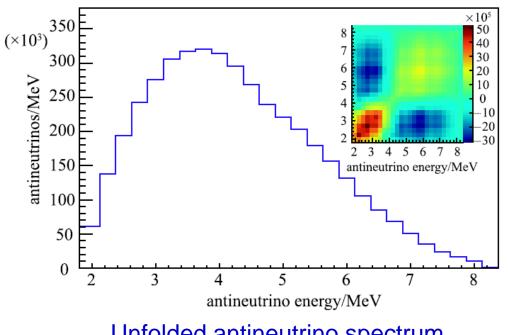
$$\chi^{2} = \sum_{i,j} (N_{i}^{\text{obs}} - N_{i}^{\text{pred}}) (V^{-1})_{ij} (N_{j}^{\text{obs}} - N_{j}^{\text{pred}})$$

Covariance matrix


$$V = V^{\text{stat}} + V^{\text{sys}}$$
$$V_{ij}^{\text{sys}} = \frac{1}{N^{\text{expts}}} \sum_{i=1}^{N^{\text{expts}}} (N_i^{\text{ran}} - N_i^{\text{nom}}) (N_j^{\text{ran}} - N_j^{\text{nom}})$$

- A clear "bump" in 4-6 MeV when compared to Huber+Mueller model, local significance 4.4σ
- Comparison to ILL+Vogel model gives similar "bump"

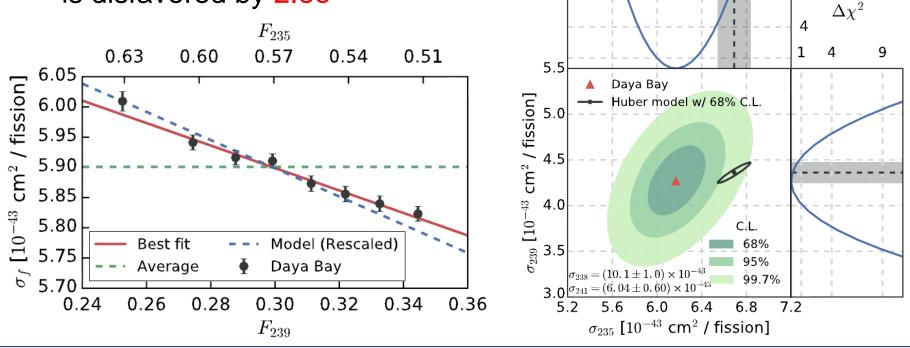
Source of the bump


Event rates in and out of the bump are highly correlated.

- Evidence that the 4-6 MeV excess comes from reactors
 - NOT from background or energy nonlinearity
 - Clear correlation with reactor thermal power
- Underestimation of reactor prediction uncertainty?

M.He: Reactor antineutrino flux and spectrum at Daya Bay

- Unfolding to neutrino energy: SVD regularization method and Bayesian iterative method give consistent results
- Correction of oscillations
- Normalization of baselines and nuclear fission


A model-independent spectrum for other reactor experiments, with small correction to different fission fractions.

Unfolded antineutrino spectrum

Reactor fuel evolution

- Study of the neutrino flux and shape changing with reactor fuel evolution by Daya Bay
- ²³⁵U appears to be the main contributor to the reactor anomaly
- Equal deficit hypothesis suggested by the sterile neutrino as the sole cause of reactor anomaly is disfavored by 2.8σ

Summary

- Reactor neutrinos played an important role in the history, leading to the first discovery of the neutrino, the first confirmation of solar neutrino oscillation, and the first observation of θ_{13}
- Daya Bay has measured the absolute neutrino flux, spectrum, and the fuel revolution
 - $\sigma_f = (5.91 \pm 0.12) \times 10^{-43} \text{ cm}^2/\text{fission}$, consistent with previous experiments, ~5% deficit compared to Huber+Mueller model
 - A "bump" in 4-6 MeV of prompt energy was found when compared to reactor models, with local significance 4.4σ
 - Reactor fuel evolution study suggests ²³⁵U as the main contributor to the reactor anomaly, and disfavors sterile neutrino as the sole cause by 2.8σ
- Future plan
 - Reduce absolute efficiency uncertainty to improve flux measurement
 - Reduce energy response uncertainty to improve spectrum measurement
 - Improve fuel revolution study and try isotopes decomposition