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The Vcb matrix element: Tensions

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


Matrix must be unitary
(preserve the norm)

Determination |Vcb| (·10−3)
Exclusive 39.2± 0.7
Inclusive 42.2± 0.8
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The Vcb matrix element: Measurement from exclusive
processes

dΓ

dw

(
B̄ → D∗`ν̄`

)
︸ ︷︷ ︸

Experiment

=
G2
Fm

5
B

48π2
(w2 − 1)

1
2P (w) |ηew|2︸ ︷︷ ︸

Known factors

|F(w)|2︸ ︷︷ ︸
Theory

|Vcb|2

The amplitude F must be calculated in the theory

Extremely difficult task, QCD is non-perturbative

Can use effective theories (HQET) to say something about F
Separate light (non-perturbative) and heavy degrees of freedom as mQ →∞
limmQ→∞ F(w) = ξ(w), which is the Isgur-Wise function
We don’t know how ξ(w) looks like, but we know ξ(1) = 1

At large (but finite) mass F(w) receives corrections O
(
αs,

ΛQCD
mQ

)
Reduction in the phase space (w2 − 1)

1
2 limits experimental results at w ≈ 1

Need to extrapolate |Vcb|2 |ηewF(w)|2 to w = 1
This extrapolation is done using well established parametrizations
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The Vcb matrix element: The parametrization issue

All the parametrizations perform an expansion on the z parameter

z =

√
w + 1−

√
2

√
w + 1 +

√
2

Boyd-Grinstein-Lebed (BGL) Phys. Rev. Lett. 74 (1995) 4603-4606

Phys.Rev. D56 (1997) 6895-6911

Nucl.Phys. B461 (1996) 493-511fX(w) =
1

BfX (z)φfX (z)

∞∑
n=0

anz
n

BfX Blaschke factors, includes contributions from the poles
φfX is called outer function and must be computed for each form factor
Unitarity constrains

∑
n |an|

2 ≤ 1

Caprini-Lellouch-Neubert (CLN) Nucl. Phys. B530 (1998) 153-181

F(w) ∝ 1− ρ2z + cz2 − dz3, with c = fc(ρ), d = fd(ρ)

Relies strongly on HQET, spin symmetry and (old) inputs
Tightly constrains F(w): four independent parameters, one relevant at w = 1
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The Vcb matrix element: The parametrization issue

From Phys. Lett. B769 (2017) 441-445 using Belle data at non-zero recoil and

lattice data at zero recoil

CLN seems to
underestimate the slope
at low recoil

The BGL value of |Vcb| is
compatible with the
inclusive one

|Vcb| = 41.7±2.0(×10−3)

Current discrepancy might be an artifact

Data at w & 1 is urgently needed to settle the issue

Experimental measurements perform badly at low recoil

We would benefit enormously from a high precision lattice calculation at w & 1
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The Vcb matrix element: Tensions in lepton universality

R
(
D(∗)

)
=
B
(
B → D(∗)τντ

)
B
(
B → D(∗)`ν`

)
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Introduction to Lattice QCD

b

ū

c

W

`

ν̄`

(Experiment) = (Known)×(CKM)×(Had. Matrix El.)

The lattice allows us to compute hadronic matrix elements from first
principles

Requires experimental data to make full predictions about nature
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Introduction to Lattice QCD

LQCD =
∑
f

ψ̄f (γµDµ +mf )ψf +
1

4
trFµνF

µν

Discretize space-time in a
computer

Perform simulations
approaching the physical limit

Finite lattice spacing a→ 0
Finite volume L→∞
mπ → mPhys

π , mQ → mPhys
Q

Use the path integral formulation and montecarlo simulations

Z =

∫
DψDψ̄DAe−S , S =

∫
d4xLQCD(ψ̄, ψ,A)
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Introduction to Lattice QCD

Steps in a lattice calculation

1 Generate gluon field configurations with the right distribution

2 Calculate quark propagators for each valence quark at source points

3 Tie together the propagators to construct correlators (normally 2- or 3-point
functions)

4 Extract hadron masses, energies, hadronic matrix elements... from correlators

5 Extra/Inter-polate results to the continuum limit (a→ 0) and to the right
quark masses

6 Perform a systematic error analysis

The last point determines how reliable the lattice result is
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Introduction to Lattice QCD

The systematic error analysis is based on EFT descriptions of QCD
The EFT description:

provides functional form for different extrapolations (or interpolations)

can be used to construct improved actions

can estimate the size of the systematic errors

In order to keep the systematic errors
under control we must repeat the
calculation for several lattice spacings,
volumes, light quark masses... and use
the EFT to extrapolate to the physical
theory
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Calculating Vcb on the lattice

Form factors

〈D∗(pD∗ , εν)| Vµ
∣∣B̄(pB)

〉
2
√
mBmD∗

=
1

2
εν∗εµνρσv

ρ
Bv

σ
D∗hV (w)

〈D∗(pD∗ , εν)| Aµ
∣∣B̄(pB)

〉
2
√
mBmD∗

=

i

2
εν∗ [gµν (1 + w)hA1

(w)− vνB (vµBhA2
(w) + vµD∗hA3

(w))]

V and A are the vector/axial currents in the continuum

The hX enter in the definition of F
We can calculate hA1,2,3,V directly from the lattice
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Introduction: The weak decay B̄ → D∗`ν̄

Helicity amplitudes

H± =
√
mBmD∗(w + 1)

(
hA1(w)∓

√
w − 1

w + 1
hV (w)

)

H0 =
√
mBmD∗(w+1)mB [(w − r)hA1

(w)− (w − 1) (r hA2
(w) + hA3

(w))] /
√
q2

HS =

√
w2 − 1

r(1 + r2 − 2wr)
[(1 + w)hA1

(w) + (wr − 1)hA2
(w) + (r − w)hA3

(w)]

Form factor in terms of the helicity amplitudes

χ(w) |F|2 =
1− 2wr + r2

12mBmD∗ (1− r)2

(
H2

0 (w) +H2
+(w) +H2

−(w)
)
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Calculating Vcb on the lattice: Available ensembles
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Heavy quarks use the fermilab action

Size of the point proportional to the statistics (min 2372, max 15072)
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Calculating Vcb on the lattice: Two-point functions

〈X(t)| X(0)〉 =
∑
i

(−1)it Z2
i

(
e−Eit + e−Ei(T−t)

)
Any state that shares quantum numbers with X can be created

Use smearing to increase overlap with the desired state

The staggered formulation adds new (unphysical) particles to the mix

It respects a subgroup of chiral symmetry that allows for parity partners
The parity partners oscillate with (−1)t factor and must be fitted

Consider N +N states
(N oscillating, N
non-oscillating)

2N−1∑
i

(−1)
i(t+1)

Z
2
i

(
e
−Eit + e

−Ei(T−t)
)

2 3 4 5 6 7 8 9 10 11
tmin

1.00
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1.10

1.15
E
B
(r

es
t m

as
s)

E0  1+1 E0  2+2 E0  3+3
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Calculating Vcb on the lattice: Dispersion relation

Discretization effects coming from the heavy quark break the dispersion
relation

The Fermilab action uses tree-level matching, discretization errors O(αm)

a2E2(pµ) = (am1)
2+

m1

m2
(pa)2+

1

4

[
1

(am2)2
−

am1

(am4)
3

]
(a2p2)2−

am1w4

3

3∑
i=1

(api)
4+O(p6

i )

As long as the
discretization errors
are under control, this
is all right

In the Fermilab action
we interpret the
kinetic mass am2 as
the particle mass
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Calculating Vcb on the lattice: Three-point functions

〈Y (0)|Wµ(t) |X(Ts)〉 =
∑
i

∑
j

(−1)it(−1)j(Ts−t)WXj→Yi ×

ZY,iZX,j e
−EY,it e−EX,j(Ts−t)

As before, any state that shares quantum numbers with X, Y can be created

We construct ratios to cancel leading order exponentials, overlap and
renormalization factors

Oscillating states with weight (−1)t also appear in the three-point functions

A clever average removes them up to a negligible error

R̄(t, Ts) =
1

2
R(t, Ts) +

1

4
R(t, Ts + 1) +

1

4
R(t+ 1, Ts + 1)

Fit function
r
(

1 +Ae−∆ED∗ t +Be−∆EB(Ts−t)
)
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Calculating Vcb on the lattice: The recoil parameter w

The recoil parameter is measured dynamically

In the lab frame (B meson at rest)

w2 = 1 + v2
D∗

Ratio of three point functions

Xf (p) =
〈D∗(p)|V |D∗(0)〉
〈D∗(p)|V4 |D∗(0)〉

=
vD∗

w + 1

From here

w(p) =
1 + x2

f

1− x2
f

Alternatively one can use the dispersion relation
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Calculating Vcb on the lattice: form factors

|RA1
(w)|2 =

〈D∗(p⊥)|A
∣∣B̄(0)

〉 〈
B̄(0)

∣∣A |D∗(p⊥)〉
〈D∗(0)|V4 |D∗(0)〉

〈
B̄(0)

∣∣V4

∣∣B̄(0)
〉 =

(
1 + w

2

)2

|hA1
(w)|2

The double ratio cancels leading overlap factors and energy exponentials
Phys. Rev. D83 (2011) 036004

XV (p) =
〈D∗(p⊥)|V

∣∣B̄(0)
〉

〈D∗(p⊥)|A
∣∣B̄(0)

〉 =

√
w − 1

w + 1

hV (w)

hA1(w)

R0(p) =
〈D∗(p)|A4

∣∣B̄(0)
〉

〈D∗(p⊥)|A
∣∣B̄(0)

〉 =
√
w2 − 1

(
1− hA2(w) + whA3(w)

(1 + w)hA1
(w)

)

R1(p) =

〈
D∗(p‖)

∣∣A ∣∣B̄(0)
〉

〈D∗(p⊥)|A
∣∣B̄(0)

〉 = w −
(
w2 − 1

)
hA3

(w)

(1 + w)hA1
(w)
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Calculating Vcb on the lattice: Current renormalization

In the coefficients of the terms of our effective theory a dependence arises
with the scale (i.e. a)

The renormalization tries to account for the right dependence

The scheme we employ is called Mostly non-perturbative renormalization of
results

ZV 1,4,A1,4 = ρV 1,4,A1,4︸ ︷︷ ︸
Perturbative factor

×
√
ZVbbZVcc︸ ︷︷ ︸

Non-perturbative piece

The (relatively large) non-perturbative piece cancels in our ratios

The (close to one) perturbative piece (matching factor ρ) is calculated at
one-loop level for w = 1

The error for w 6= 1 is estimated and added to the factor

This analysis is blinded and the blinding happens at the level of the matching
factor
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Calculating Vcb on the lattice: The chiral-continuum
extrapolation

Our data represents the form factors at non-zero a and unphysical mπ

Extrapolation to the physical pion mass described by EFTs

The EFT describe the a and the mπ dependence

Functional form explicitly known

hA1(w) = 1 +
XA1

(Λχ)

m2
c

+
g2
D∗Dπ

48π2f2
πr

2
1

logsSU3(a,ml,ms,ΛQCD)︸ ︷︷ ︸
NLOχPT + HQET

−

ρ2(w − 1) + k(w − 1)2︸ ︷︷ ︸
w dependence

+c1xl + c2x
2
l + ca1xa2 + ca2x

2
a2 + ca,mxlxa2︸ ︷︷ ︸

NNLOχPT

with

xl = B0
ml

(2πfπ)2
, xa2 =

(
a

4πfπr2
1

)2
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Results: Chiral-continuum fits
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Results: Chiral-continuum fits
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Analysis: z-Expansion

The BGL expansion is performed on different (more convenient) form factors

Phys.Lett. B769, 441 (2017), Phys.Lett. B771, 359 (2017)

g = hV (w)√
mBmD∗

=
1

φg(z)Bg(z)

∑
j

ajz
j

f =
√
mBmD∗(1 + w)hA1

(w) =
1

φf (z)Bf (z)

∑
j

bjz
j

F1 =
√
q2H0 =

1

φF1
(z)BF1

(z)

∑
j

cjz
j

F2 =

√
q2

mD∗
√
w2−1

HS =
1

φF2(z)BF2(z)

∑
j

djz
j

Constraint F1(z = 0) = (mB −mD∗)f(z = 0)
Constraint F1(z = zMax) = 1+r

(1+w)m2
B(1−r)F2(z = zMax)

BGL (weak) unitarity constraints∑
j

a2
j ≤ 1,

∑
j

b2j + c2j ≤ 1,
∑
j

d2
j ≤ 1
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Results: Pure-lattice prediction and joint fit
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Results: Angular bins
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Analysis: What happens if I use CLN?

CLN is much more constraining than BGL, using only 4 fit parameters

hA1(w) = hA1(1)
[
1− 8ρ2z +

(
53ρ2 − 15

)
z2 −

(
231ρ2 − 91

)
z3
]

R1(w) = R1(1)− 0.12 (w − 1) + 0.05 (w − 1)
2

R2(w) = R2(1) + 0.11 (w − 1)− 0.06 (w − 1)
2

with

R1(w) =
hA1

(w)

hV (w)

R2(w) =

mD∗
mB

hA2
(w) + hA3

(w)

hA1
(w)

Alejandro Vaquero (University of Utah) |Vcb| from B̄ → D∗`ν̄ at non-zero recoil February 15th, 2019 26 / 29



Analysis: What happens if I use CLN?
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When lattice data is added, CLN breaks down

Prediction for hA1
very constrained in the CLN parametrization
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Results: R(D∗)

Pure lattice QCD prediction of R(D∗)

Includes constraint F1(wMax) = 1+r
(1+w)m2

B(1−r)F2(wMax)

w

(B
D

)
Lat = e,
Lat =

Lat + Belle = e,
Lat + Belle =
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Conclusions

What to expect

Errors might not be improved compared to previous lattice estimations

The main new information of this analysis won’t come from the zero-recoil
value, but from the slope

Main source of errors of our form factor seems to be discretization errors (to
be confirmed in error budget)

Missing only discretization errors + last checks

The future

Well established roadmap to reduce errors in our calculation
Light HISQ quarks + heavy Fermilab quarks aim to reduce mainly chiral fit
errors
Light HISQ quarks + heavy HISQ quarks aim to reduce discretization and
renormalization errors
New runs measure other interesting quantities (i.e. the tensor form factor)

This roadmap is to be followed in other processes involving other CKM
matrix elements

Would be interesting to add existing B → D data to the mix, to further
constrain the form factors
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