
1 → 2 transition amplitudes from lattice QCD

Stefan Meinel

KEK-FF 2019



Introduction

Many important processes in flavor physics have two (or more) hadrons in the
final state. This includes the B decays

B → K
∗(→ Kπ)ℓ+ℓ−

and
B → ρ(→ ππ)ℓ−ν̄,

which will be analyzed by Belle II.

In our past lattice QCD calculation of the B → K∗ form factors
[R. R. Horgan, Z. Liu, S. Meinel, M. Wingate, arXiv:1310.3722/PRD2014],
we performed the analysis as if the K∗ was stable, which introduces
uncontrolled systematic errors.

To properly determine the B → K∗ and B → ρ resonance form factors, and to
obtain information beyond the resonant contribution, lattice QCD calculations
of B → Kπ and B → ππ form factors are needed.

Lattice QCD calculations involving multi-hadron states are substantially more
complicated than for single-hadron states, but the finite-volume formalism
needed to compute 1 → 2 (as well as 0 → 2 and 2 → 2) transition matrix
elements has been fully developed. I will discuss our progress toward applying
this formalism to B → Kπ and B → ππ.
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Lattice QCD

Lattice QCD allows us to nonperturbatively compute Euclidean correlation
functions in a finite volume:

〈O1...On〉L =
1

Z

∫

D[ψ,ψ,U] O1...On e
−SE [ψ,ψ,U].

With periodic b.c., the total spatial momentum of a finite-volume state can
take on the values P = 2π

L
(nx , ny , nz), where nx , ny , nz are integers.

The finite-volume energy spectrum can be extracted from two-point correlation
functions of operators with the desired quantum numbers (irreps):

〈O1(P, t1)O
†
2 (P, t2)〉L =

∑

n

1

2En

〈0|O1|n,P, L〉〈n,P, L|O†
2 |0〉e−En|t1−t2|.



Hadron-hadron scattering on the lattice

In 1991, Martin Lüscher showed that infinite-volume elastic hadron-hadron
scattering amplitudes can be extracted from the finite-volume energy levels.

[M. Lüscher, Nucl. Phys. B 354, 531 (1991)]

A recent review of this very active field can be found in:

R. A. Briceño, J. J. Dudek, R. D. Young, arXiv:1706.06223/RMP2018
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Simple case: single channel, partial-wave mixing neglected
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Hadron-hadron scattering on the lattice

Simple case: single channel, partial-wave mixing neglected

The energy levels En correspond to the solutions kn of the Lüscher quantization
condition

cot δ(k)
︸︷︷︸

infinite-volume phase shift

= cot φ(k, L,P,Λ)
︸ ︷︷ ︸

known finite-volume function

,

where P is the total momentum, and the scattering momentum k is related to
the center-of-mass energy ECM =

√
s via

√

m2
1 + k2 +

√

m2
2 + k2 = ECM =

√
s.

The finite-volume geometric function is given by

cotφ(k, L,P,Λ) =
∑

l,m

c
P,Λ
lm

ZP
lm

(
1; (kL/(2π))2

)

π3/2
√
2l + 1γ ( kL

2π
)l+1

, Z
P
lm(s; x) =

∑

r∈PP

r lYlm(r)

(r2 − x)s
.

The coefficients c P,Λ
lm depend on the irrep Λ of the lattice symmetry group.

[See, e.g., L. Leskovec, S. Prelovsek, arXiv:1202.2145/PRD2012]
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1 → 2 transition matrix elements on the lattice

The goal is to determine matrix elements with infinite-volume two-hadron
“out” states, such as

〈π0π+, s,P, l ,m| Jµ |B, pB〉 (infinite volume),

where Jµ = ūγµb, ūγµγ5b.

On the lattice, the single-meson initial state is not significantly affected by the
finite volume. However, instead of the continuum of noninteracting π0π+

“out” states, we have the interacting finite-volume states, and we only get

〈n, L,P,Λ, r | Jµ |B, pB〉 (finite volume).

Here, Λ is the irrep of the (little group of the) cubic group, and r is the row of
the irrep.



1 → 2 transition matrix elements on the lattice

In the year 2000, L. Lellouch and M. Lüscher showed how the finite-volume and
infinite-volume matrix elements are related for the case of the K → ππ
nonleptonic weak decay.

[L. Lellouch, M. Lüscher, arXiv:hep-lat/0003023/CMP2001].

The formalism has since been generalized to arbitrary 1 → 2 transition matrix
elements with nonzero four-momentum transfer, and including the effects of
coupled-channel interactions.

[C. J. D. Lin, G. Martinelli, C. T. Sachrajda, M. Testa, arXiv:hep-lat/0104006/NPB2001;
N. H. Christ, C. Kim, T. Yamazaki, arXiv:hep-lat/0507009/PRD2005;
M. T. Hansen and S. R. Sharpe, arXiv:1204.0826/PRD2012;
R. A. Briceño and Z. Davoudi, arXiv:1204.1110/PRD2013;
R. A. Briceño, M. T. Hansen, A. Walker-Loud, arXiv:1406.5965/PRD2015;

R. A. Briceño, M. T. Hansen, arXiv:1502.04314/PRD2015].



1 → 2 transition matrix elements on the lattice

Considering again the simple case without coupled channels and neglecting
partial-wave mixing, the relation is given by

|〈π0π+, sn,P,Λ, r | Jµ |B, pB〉|2
|〈n, L,P,Λ, r | Jµ(q) |B, pB〉|2

=
1

2En

16π
√
sn

kn

[

∂δ

∂E
+
∂φ

∂E

]

E=En

,

where δ = δl is the scattering phase shift for the partial wave l considered here,
and φ is the finite-volume function that also appears in the Lüscher
quantization condition.



1 → 2 transition matrix elements on the lattice
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πγ → ππ

The electromagnetic process πγ → ππ is a good starting point to test the
lattice methods for 1 → 2 transitions.

We allow the photon to be virtual. We take the ππ system to have angular
momentum 1 and isospin 1, so that we expect the ρ resonance to appear.

The process is described by the hadronic matrix element

〈ππ, s,P, 1,m| Jµ |π, pπ〉 =
2i V (q2, s)

mπ
ǫνµαβ εν(P,m)

︸ ︷︷ ︸

ππ polarization vector

(pπ)αPβ ,

where Jµ is the quark electromagnetic current. The form factor V (q2, s) is a
function of the photon virtuality

q
2 = (pπ − P)2

and the ππ invariant mass
s = P

2.



πγ → ππ

There is one previous calculation of πγ → ππ, by the Hadron Spectrum
Collaboration, with mπ ≈ 400 MeV:

R. A. Briceno, J. J. Dudek, R. G. Edwards, C. J. Shultz, C. E. Thomas, D. J. Wilson,

arXiv:1507.06622/PRL 2015; arXiv:1604.03530/PRD2016.

Our calculation of πγ → ππ, with mπ ≈ 320 MeV, is published in

C. Alexandrou, L. Leskovec, S. Meinel, J. Negele, S. Paul, M. Petschlies,

A. Pochinsky, G. Rendon, S. Syritsyn, arXiv:1807.08357/PRD2018.

We use gauge configurations with 2 + 1 flavors of clover fermions, generated by
the JLab and William & Mary lattice QCD groups.
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πγ → ππ

The first step is to determine the ππ finite-volume energy spectra for various
total momenta P and irreps Λ that contain the P wave. We compute matrices
of two-point correlation functions

C
P,Λ,r
ij (t) =

〈

O
Λ,r
i (P, t) OΛ,r †

j (P, 0)
〉

,

using operators with both quark-antiquark and two-pion structure:

O1,2(P, t) ∼
∑

x

d̄(x, t)Γu(x, t)e iP·x,

O3,4(P, t) ∼ 1√
2

(

π+(p1, t)π
0(p2, t)− π0(p1, t)π

+(p2, t)
)

,

where π+(p1, t) =
∑

x

d̄(x, t)Γu(x, t)e ip1·x etc.



πγ → ππ

We then solve the generalized eigenvalue problem (GEVP)
∑

j

C
P, Λ, r
ij (t)vn, P, Λ

j (t0) = λP, Λ
n (t, t0)

∑

j

C
P, Λ, r
ij (t0)v

n, P, Λ
j (t0).

For large t0 and t − t0, the eigenvalues satisfy

λP, Λ
n (t, t0) = e

−EP, Λ
n (t−t0).

Example:

4 8 12 16 20

t/a

10
−7

10
−5

10
−3

C
A

2
,2

π L

ij

χ2

dof
= 1.04

i = 1, j = 1

i = 1, j = 3

i = 1, j = 4

i = 3, j = 3

i = 3, j = 4

i = 4, j = 4

4 6 8 10
tmin/a

a
E

1 f
it

4 6 8 10 12 14 16

t/a

0.428

0.436

0.444

0.452

a
E

1 ef
f

a
E

2 f
it

0.506

0.512

0.518

0.524

a
E

2 ef
f

a
E

3 f
it

0.574

0.588

0.602

0.616

a
E

3 ef
f

|~P | = 2π
L , Λ = A2, basis: O1234

Correlation matrix GEVP Eeff Fitted energies



πγ → ππ

In step 2, we use Lüscher’s method to extract the P-wave ππ scattering phase
shifts, and we perform a Breit-Wigner fit:

0.42 0.48 0.54 0.60

a
√

s

0

45

90

135

180

δ
1
[◦
]

amρ = 0.4609(16)(14)
gρππ = 5.69(13)(16)

Fit:

cot δ(s) =
m2

R − s√
s Γ(s)

,

Γ(s) =
g 2
ρππ

6π

k3

s

The colors indicate the total momenta used on the lattice, | L
2π
P|2 = 0, 1, 2, 3.



πγ → ππ

Step 3 is to determine the finite-volume transition matrix elements of the
electromagnetic current from three-point functions.

To compute the matrix element for the nth excited state for a given
momentum and irrep, we use the optimized operator

On, Λ, r (P, t, t0) =
∑

i

v
n, P, Λ †
i (t0)O

Λ, r
i (P, t),

where v
n, P, Λ
j (t0) is the nth generalized eigenvector obtained previously from

the two-point-function analysis.

The optimized three-point function is then defined as

Ωpπ, P, Λ, r
3, µ, n (tπ, tJ , tππ, t0) = 〈Oπ(pπ, tπ) Jµ(tJ , q)On, Λ, r (P, tππ, t0)〉.
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πγ → ππ

The finite-volume matrix elements can then be obtained from the following
ratios:

R
pπ, P, Λ, r
µ, n (tπ, tJ , tππ) =

Ωpπ, P, Λ, r
3, µ, n (tπ, tJ , tππ, t0) Ω

pπ, P, Λ, r †
3, µ, n (tπ, t

′, tππ, t0)

C
pπ
π (∆t) λP,Λ

n (∆t, t0)

−→
large times

|〈n, L,P,Λ, r | Jµ(q) |π, pπ〉|2

4EP,Λ
n E

pπ
π

.

Example:

2 4 6
(tJ − tππ)/a

0.000

0.029

0.057

0.086

2 4 6 8
(tJ − tππ)/a

2 4 6 8 10
(tJ − tππ)/a

8,
10
,1
2;

0,
0,
0

χ
2

d
o
f
:
1.
15

8,
10
,1
2;

1,
1,
1

χ
2

d
o
f
:
0.
76

8,
10
,1
2;

2,
2,
2

χ
2

d
o
f
:
0.
69

8,
10
,1
2;

2,
3,
3

χ
2

d
o
f
:
0.
70

10
,1
2;

0,
0

χ
2

d
o
f
:
0.
31

10
,1
2;

1,
1

χ
2

d
o
f
:
0.
67

10
,1
2;

2,
2

χ
2

d
o
f
:
0.
67

10
,1
2;

3,
3

χ
2

d
o
f
:
0.
72

10
;
0

χ
2

d
o
f
:
0.
00

10
;
1

χ
2

d
o
f
:
0.
36

10
;
2

χ
2

d
o
f
:
0.
55

10
;
3

χ
2

d
o
f
:
0.
57

12
;
0

χ
2

d
o
f
:
0.
00

12
;
1

χ
2

d
o
f
:
0.
51

12
;
2

χ
2

d
o
f
:
0.
39

12
;
3

χ
2

d
o
f
:
0.
45

| L
2π
~P | =1, Λ =E, Em =0.5004, | L

2π~q| =
√
3, | L

2π~pπ| =
√
2, LD : (2πLEn)



πγ → ππ

In step 4, we map the finite-volume matrix elements to the infinite-volume
matrix elements using the Lellouch-Lüscher (LL) factors. The LL factors look
like this:

0.40 0.45 0.50 0.55

a
√
s

20
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| L
2π

~P | =
√
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a
√
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√
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√
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√
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2π
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a
√
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| L
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√
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a
√
s
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| L
2π

~P | =
√
3, Λ = E 32πE

~P,Λ
n mπ

4E
~P,Λ
n mπk

~P,Λ
n

∂φ
~P,Λ

∂
√

s

32πE
~P,Λ
n mπ

4E
~P,Λ
n mπk

~P,Λ
n

( ∂δI
∂
√

s
+∂φ

~P,Λ

∂
√

s
)

32πE
~P,Λ
n mπ

4E
~P,Λ
n mπk

~P,Λ
n

(∂δII
∂
√

s
+∂φ

~P,Λ

∂
√

s
)



πγ → ππ

Here are the data points we obtain for the infinite-volume πγ → ππ transition
form factor:

V (q
2
, s) =

F (q2, s)

m2
R

− s − i
√

s Γ(s)

√

16πsΓ(s)

k
, F (q

2
, s) =

1

1 − q2

m2
P

∑

n,m

Anmz
nSm

, S =
s − m2

R

m2
R



πγ → ππ

We perform fits of the q2 and s dependence of the form factor using a
two-dimensional power series:

V (q
2
, s) =

F (q2, s)

m2
R

− s − i
√

s Γ(s)

√

16πsΓ(s)

k
, F (q

2
, s) =

1

1 − q2

m2
P

∑

n,m

Anmz
nSm

, S =
s − m2

R

m2
R



πγ → ππ

Finally, we can also obtain the πγ → ρ resonant form factor by analytically
continuing to the resonance pole at complex s:

Fπγ→ρ(q
2) = F (q2, m2

R + imRΓR).

−0.10 −0.05 0.00 0.05

(aq)2

0.00

0.03

0.06

0.09

0.12
Re [Fπγ→ρ(q

2)]

Im [Fπγ→ρ(q
2)]
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Prospects for B → ππℓ−ν̄, B → Kπℓ+ℓ−, ...

The πγ → ππ calculation presented so far is part of a larger program to
determine the B → ππℓν̄, D → ππℓν, πγ → ππ, B → Kπℓ+ℓ−, D → Kπℓν,
and Kγ → Kπ form factors.

The charm decays are ideal to test the methods, because detailed experimental
data for the decay distributions are available.

Our code computes the correlation functions for all of these processes
simultaneously. The production status is as follows:

Label N3
s × Nt a (fm) mπ (MeV) Status

C13 323 × 96 ≈ 0.114 ≈ 320 done
D5 323 × 64 ≈ 0.088 ≈ 280 running
D6 483 × 96 ≈ 0.088 ≈ 170 running
D7 643 × 128 ≈ 0.088 ≈ 170 planned
D8 723 × 196 ≈ 0.088 ≈ 140 planned

Thanks to the JLab and W&M LQCD groups for generating the gauge configurations!

The analyses of the other processes are underway.
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Prospects for B → ππℓ−ν̄, B → Kπℓ+ℓ−, ...

This plot shows the kinematic points we expect to obtain for the P-wave
D → ππℓν form factors on the C13 ensemble:

0.00 0.25 0.50 0.75 1.00 1.25 1.50

q2 [GeV2]

0.6

0.7

0.8

0.9

1.0

√
s
[G
eV

]

pππ = (0, 0, 0) 2π/L
pππ = (0, 0, 1) 2π/L
pππ = (0, 1, 1) 2π/L
pππ = (1, 1, 1) 2π/L
pD = (0, 0, 0) 2π/L
pD = (0, 0,−1) 2π/L
pD = (0,−1,−1) 2π/L
pD = (−1,−1,−1) 2π/L

(D → Kπℓν will be similar.)
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Prospects for B → ππℓ−ν̄, B → Kπℓ+ℓ−, ...

The formalism requires
√
s to be below any ≥ 3-body thresholds, such as

ππππ and Kηη. This becomes more restrictive at lower pion mass.

The coupling of the ππ-K̄K and Kπ-Kη channels can be included. Again, this
becomes more relevant at high

√
s and at lower pion mass.

Partial-wave mixing can also be included in the analysis. This is particularly
important for the unequal-mass (Kπ) case, where even and odd partial waves
can mix (some irreps contain both the S wave and the P wave).

There is no limitation on the q2 range from the finite-volume formalism, but
statistical and discretization errors grow as the final-state total momentum is
increased.



Prospects for B → ππℓ−ν̄, B → Kπℓ+ℓ−, ...

Finally, here are our preliminary results for the Kπ, P-wave, I = 1/2 scattering
amplitude at mπ ≈ 320 MeV:
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gK∗ = 5.29± 0.31
mK∗ = 892.7± 6.3 MeV

χ2/dof = 0.92

[G. Rendon et al., arXiv:1811.10750]



Prospects for B → ππℓ−ν̄, B → Kπℓ+ℓ−, ...

... and at mπ ≈ 180 MeV:
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χ2/dof = 0.68

[G. Rendon et al., arXiv:1811.10750]



Summary

Thanks to new developments in the formalism for interacting multi-hadron
systems in a finite-volume, we are now in a position to perform rigorous lattice
QCD calculations for semileptonic decays with two hadrons (and resonances) in
the final state.

The formalism allows us to properly determine resonance form factors, but
provides far more information. We can directly predict the decay distribution
for the two-hadron final state, at least in the lowest partial waves.

Lattice QCD computations are underway for πγ → ππ, D → ππℓν, B → ππℓν̄,
Kγ → Kπ, D → Kπℓν, and B → Kπℓ+ℓ−. There is still a lot of work to do.
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