Flavon Stabilization in Models with Discrete Flavor Symmetry

So Chigusa
Department of Physics, University of Tokyo

December 6 KEK-PH 2018 winter

SC, Shinta Kasuya, and Kazunori Nakayama PLB 788 (2019) 494 [arXiv:1810.05791]

Summary of our work

We considered models with discrete flavor symmetry that explain lepton mixing angles

- Focus on SUSY A_{4} model as an example

Discrete symmetry indicates existence of degenerate vacua

- Breaking of $A_{4} \Leftrightarrow$

Domain wall (DW) formation
that may overcloses the universe

We proposed a simple model without the domain wall problem

- A_{4} symmetry is never restored after inflation
- Vacuum alignment (VA) is realized in a simple way
(No need for "driving fields")

Lepton mixing matrix

In the basis m_{ℓ} is diagonalized,

$$
\begin{aligned}
& U^{T} m_{\nu} U=\operatorname{diag}\left(m_{1}, m_{2}, m_{3}\right) \\
& U=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta_{\mathrm{CP}}} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta_{\mathrm{CP}}} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta_{\mathrm{CP}}} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta_{\mathrm{CP}}} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta_{\mathrm{CP}}} & c_{23} c_{13}
\end{array}\right)
\end{aligned}
$$

NuFIT 4.0 results
[1811.05487]

$$
\begin{aligned}
\sin ^{2} \theta_{12} & =0.310_{-0.012}^{+0.013} \\
\sin ^{2} \theta_{23} & =0.582_{-0.019}^{+0.015} \\
\sin ^{2} \theta_{13} & =0.02240_{-0.00066}^{+0.00065} \\
\delta_{\mathrm{CP}} /{ }^{\circ} & =217_{-28}^{+40}
\end{aligned}
$$

Tri-bimaximal mixing (TB)
P. F. Harrison ${ }^{+}$(2002), Z. z. Xing (2002)

$$
\begin{aligned}
\sin ^{2} \theta_{12} & =0.333 \\
\sin ^{2} \theta_{23} & =0.5 \\
\sin ^{2} \theta_{13} & =0
\end{aligned}
$$

roughly approximate results

(SUSY) A_{4} flavor model

A_{4} triplet (3) flavons φ_{S}, φ_{T} breaks A_{4} into Z_{2}, Z_{3}

Also accidental $\mu-\tau$ symmetry in the neutrino sector
\Leftrightarrow TB mixing
E. Ma^{+}(2001), K. S. Babu^{+}(2003), G. Altarelli ${ }^{+}$(2005)

Vacuum alignment

$$
\left\langle\varphi_{S}\right\rangle=\left(v_{S}, v_{S}, v_{S}\right) \quad ; \quad\left\langle\varphi_{T}\right\rangle=\left(v_{T}, 0,0\right)
$$

often realized by introducing "driving fields"

Degenerate vacua in A_{4} model

There are degenerate vacua connected by A_{4} transformations

This leads to the domain wall formation

Cosmology of flavor model : domain wall problem

There are several ways to avoid domain wall problem

- Soft breaking of discrete symmetry
- Use of QCD anomaly

SC and K. Nakayama [1808.09601]

- Embedding the symmetry into continuous one
S. F. King and Y. Zhou [1809.10292]
- Discrete symmetry never restores (after inflation)
- Both $H_{\text {inf }}, T_{R}<m_{\varphi}$
- Negative soft SUSY mass with non-renorm. potential \Rightarrow This talk

Basic idea

Consider the flavon potential

$$
\begin{aligned}
& V(\varphi) \sim-m^{2}|\varphi|^{2}+\frac{|\varphi|^{2 n-2}}{\Lambda^{2 n-6}} \\
& V^{\prime}\left(\varphi_{0}\right)=0
\end{aligned}
$$

φ never crosses the origin \Leftrightarrow Symmetry never restores

Questions

(a) Where negative mass term come from?
(b) Cosmological dynamics of φ ?
(c) How to realize A_{4} vacuum alignment?
(a)(b) : similar argument in Affleck-Dine baryogenesis
M. Dine ${ }^{+}$(1995)

(a) Negative soft SUSY mass

Consider non-minimal contribution to Kähler potential

$$
\delta K=\frac{c_{1}}{M_{p}^{2}} \chi^{\dagger} \chi \varphi^{\dagger} \varphi
$$

δK generates mass term for scalar φ

$$
\mathcal{L} \supset \frac{c_{1}}{M_{p}^{2}}\left\langle F_{\chi}^{*} F_{\chi}\right\rangle \varphi^{\dagger} \varphi
$$

(I) $H>m_{3 / 2}$
χ is a field that dominates energy of the universe $\rho=3 H^{2} M_{p}^{2}$,

$$
\left\langle F_{\chi}^{*} F_{\chi}\right\rangle \sim \rho ; m_{\varphi}^{2} \sim-3 c_{1} H^{2}
$$

(II) $H<m_{3 / 2}$
χ is a field whose F-term breaks the SUSY

$$
\left\langle F_{\chi}\right\rangle \sim m_{3 / 2} M_{p} \quad ; \quad m_{\varphi}^{2} \sim-3 c_{1} m_{3 / 2}^{2}
$$

In any case, $c_{1}>0$ leads to negative contribution to m_{φ}^{2}

(b) Cosmological dynamics of flavons

$$
\ddot{\varphi}+3 H \dot{\varphi}+V^{\prime}(\varphi)=0, \quad V(\varphi) \sim-m^{2}|\varphi|^{2}+\frac{|\varphi|^{2 n-2}}{\Lambda^{2 n-6}}
$$

Post-inflation era with $H>m_{3 / 2}(m \sim H)$
If $n \geq 6$ (RD), $n \geq 4$ (MD), friction term decelerates φ

$\Rightarrow \varphi$ oscillates around the vacuum, never crosses the origin

(c) Model

	ℓ	e^{c}	μ^{c}	τ^{c}	H_{u}	H_{d}	φ_{T}	φ_{S}	ξ
A_{4}	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{1}^{\prime \prime}$	$\mathbf{1}^{\prime}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{1}$
Z_{12}	ρ^{5}	ρ^{7}	ρ^{7}	ρ^{7}	1	1	1	ρ^{2}	ρ^{2}
$\mathrm{U}(1)_{R}$	$\frac{5}{6}$	$\frac{5}{6}$	$\frac{5}{6}$	$\frac{5}{6}$	0	0	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$

- $U(1)_{R}$ charge determines the superpotential exponent

$$
W \sim \varphi^{6} / \Lambda^{3} \quad \Leftrightarrow \quad n=6
$$

- Z_{12} charge forbids mixing between φ_{T} and $\left\{\varphi_{S}, \xi\right\}$

Vacuum alignment
Realized by linear combination of possible A_{4} contractions

$$
\begin{array}{r}
\varphi_{T}^{6}: 11 \text { terms } \\
\left\{\varphi_{S}, \xi\right\}^{6}: 17 \text { terms }
\end{array}
$$

(c) Model : example

$$
W_{\mathrm{f}}=\frac{1}{6 \Lambda^{3}}\left[g_{1}\left(\varphi_{T}^{2}\right)^{3}+g_{2}\left(\varphi_{T}^{3}\right)^{2}+g_{3}\left(\varphi_{S}^{2}\right)^{3}+g_{4}\left(\varphi_{S}^{2}\right)^{\prime \prime 3}+g_{5} \xi^{6}\right]
$$

- Product rules for A_{4} representations $\mathbf{1}, \mathbf{1}^{\prime}, \mathbf{1}^{\prime \prime}, \mathbf{3}$

$$
\mathbf{3} \otimes \mathbf{3}=\mathbf{1} \oplus \mathbf{1}^{\prime} \oplus \mathbf{1}^{\prime \prime} \oplus \mathbf{3} \oplus \mathbf{3}
$$

- Use $(\cdots),(\cdots)^{\prime \prime}$ for products transformed as $\mathbf{1}, \mathbf{1}^{\prime \prime}$

Below are regions of parameter space consistent with VA

(c) Model : general arguments

Consider inclusion of all possible terms : $g_{i}(i=1 \sim 28)$
A_{4} invariant potential for $\varphi_{T}=\left(\varphi_{T 1}, \varphi_{T 2}, \varphi_{T 3}\right)$

$$
\begin{aligned}
& V_{\mathrm{f}}^{(T)} \sim-m_{T}^{2} \varphi_{T 1}^{2}+\frac{1}{\Lambda^{6}} \varphi_{T 1}^{10}+\mathcal{O}\left(\left\{\varphi_{T 2}, \varphi_{T 3}\right\}^{2}\right) \\
& \left.\frac{\partial V_{\mathrm{f}}^{(T)}}{\partial \varphi_{T i}}\right|_{\varphi_{T 2}=\varphi_{T 3}=0}=0 \quad(i=2,3)
\end{aligned}
$$

Linear terms of $\left\{\varphi_{T 2}, \varphi_{T 3}\right\}$ are absent $\Leftrightarrow\left(v_{T}, 0,0\right)$ extremum It is a minimum in the vicinity of the benchmark model

- Same follows for φ_{S}

For non-zero region of parameter space, our model realizes required vacuum alignment

Conclusion

We proposed a SUSY A_{4} model without DW problem

- A_{4} symmetry is never restored after inflation

$$
V(\varphi) \sim-m^{2}|\varphi|^{2}+\frac{|\varphi|^{10}}{\Lambda^{6}}
$$

- Vacuum alignment is realized in a simple way

$$
W(\varphi) \sim \frac{1}{\Lambda^{3}} \sum_{i} g_{i}\left(\text { possible contractions of } \varphi^{6}\right)_{i}
$$

\Rightarrow Non-zero region of parameter space serves our purpose

backup slides

Altarelli Model

$$
\begin{array}{r|cccc|ccccc|ccc}
& \ell & e^{c} & \mu^{c} & \tau^{c} & H_{u, d} & \varphi_{T} & \varphi_{S} & \xi & \tilde{\xi} & \varphi_{0}^{T} & \varphi_{0}^{S} & \xi_{0} \\
\hline A_{4} & \mathbf{3} & \mathbf{1} & \mathbf{1}^{\prime} & \mathbf{1}^{\prime \prime} & \mathbf{1} & \mathbf{3} & \mathbf{3} & \mathbf{1} & \mathbf{1} & \mathbf{3} & \mathbf{3} & \mathbf{1} \\
Z_{3} & \omega & \omega^{2} & \omega^{2} & \omega^{2} & 1 & 1 & \omega & \omega & \omega & 1 & \omega & \omega \\
\mathrm{U}(1)_{R} & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 2 & 2 & 2 \\
w_{\ell}= & \frac{y_{e}}{\Lambda} e^{c} H_{d}\left(\varphi_{T} \ell\right)+\frac{y_{\mu}}{\Lambda} \mu^{c} H_{d}\left(\varphi_{T} \ell\right)^{\prime}+\frac{y_{\tau}}{\Lambda} \tau^{c} H_{d}\left(\varphi_{T} \ell\right)^{\prime \prime} \\
& +\frac{x_{a} \xi+\tilde{x}_{a} \tilde{\xi}}{\Lambda^{2}} H_{u} H_{u}(\ell \ell)+\frac{x_{b}}{\Lambda^{2}} H_{u} H_{u}\left(\varphi_{S} \ell \ell\right)+\text { h.c. }+\cdots \\
w_{d}= & M\left(\varphi_{0}^{T} \varphi_{T}\right)+g\left(\varphi_{0}^{T} \varphi_{T} \varphi_{T}\right) \\
& +g_{1}\left(\varphi_{0}^{S} \varphi_{S} \varphi_{S}\right)+g_{2} \tilde{\xi}\left(\varphi_{0}^{S} \varphi_{S}\right)+g_{3} \xi_{0}\left(\varphi_{S} \varphi_{S}\right) \\
& +g_{4} \xi_{0} \xi^{2}+g_{5} \xi_{0} \xi \tilde{\xi}+g_{6} \xi_{0} \tilde{\xi}^{2}
\end{array}
$$

TB from symmetries

(I) $\mu-\tau$ symmetry

$$
A_{23} \equiv\left(\begin{array}{ccc}
1 & & \\
& & 1 \\
& 1 &
\end{array}\right) \quad ; \quad m_{\nu}=A_{23} m_{\nu} A_{23}
$$

(II) S parity $\left(S^{2}=\mathbf{1}\right)$

$$
S \equiv \frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 & 2 \\
2 & -1 & 2 \\
2 & 2 & -1
\end{array}\right) \quad ; \quad m_{\nu}=S m_{\nu} S
$$

Imposing both of them, we get TB mixing matrix

$$
m_{\nu}=\left(\begin{array}{ccc}
x & y & y \\
y & x+v & y-v \\
y & y-v & x+v
\end{array}\right) \quad ; \quad U_{\mathrm{TB}}^{T} m_{\nu} U_{\mathrm{TB}}=\text { (diagonal) }
$$

Discrete symmetry A_{4}

(III) T symmetry $\left(T^{3}=\mathbf{1}\right)$

$$
\begin{aligned}
& T \equiv \operatorname{diag}\left(1, \omega, \omega^{2}\right) \quad ; \omega \equiv e^{i 2 \pi / 3} \quad\left(T^{3}=\mathbf{1}\right) \\
& m_{\ell}=(\text { diagonal }) ; m_{\ell}=T^{\dagger} m_{\ell} T
\end{aligned}
$$

Group A_{4} consists of products of S and $T(S T \neq T S)$

A_{4}	$Z_{3}(T)$		
	$\mathbf{1}$	T	T^{2}
	S	$S T$	$S T^{2}$
	$T S T^{2}$	$T S$	$T S T$
	$T^{2} S T$	$T^{2} S T^{2}$	$T^{2} S$

A_{4} flavor model

Flavon triplets φ_{S}, φ_{T} breaks A_{4} into $Z_{2}(S), Z_{3}(T)$

$\mu-\tau$ symmetry realized accidentally in the neutrino sector, and TB is realized E. Ma^{+}(2001), K. S. Babu ${ }^{+}$(2003), G. Altarelli ${ }^{+}$(2005)

Deviation from TB : $\theta_{13}>0$, etc. can be achieved by

- Higher dimensional operators G. Altarelli ${ }^{+}$(2006)
- additional $\mathbf{1}^{\prime}, \mathbf{1}^{\prime \prime}$ flavons Y. Shimizu ${ }^{+}$(2011), S. K. Kang ${ }^{+}$(2018)

Vacuum alignment and degenerate vacua

Vacuum alignment required for the symmetry breaking pattern

$$
\left\langle\varphi_{S}\right\rangle=\left(v_{S}, v_{S}, v_{S}\right) \quad ; \quad\left\langle\varphi_{T}\right\rangle=\left(v_{T}, 0,0\right)
$$

realized by introducing "driving fields" in popular models
Considering A_{4} transformation, there are 12 degenerate vacua

This leads to the domain wall formation

Scalar (= flavon) dynamics in our model

$$
\ddot{\varphi}+3 H \dot{\varphi}+V^{\prime}(\varphi)=0, \quad V(\varphi) \sim-m^{2}|\varphi|^{2}+\frac{|\varphi|^{2 n-2}}{\Lambda^{2 n-6}}
$$

(I) during inflation $(m \sim H)$
friction: $H=H_{I}>0 \cdots$ const
vacuum: $V^{\prime}(\varphi)=0 \Leftrightarrow|\varphi| \sim \varphi_{0} \equiv\left(\frac{H_{I}^{2} \Lambda^{2 n-6}}{n-1}\right)^{\frac{1}{n-2}} \cdots$ const

$|\varphi|$ quickly settles into φ_{0}
... initial condition

$$
\ddot{\varphi}+3 H \dot{\varphi}+V^{\prime}(\varphi)=0, \quad V(\varphi) \sim-m^{2}|\varphi|^{2}+\frac{|\varphi|^{2 n-2}}{\Lambda^{2 n-6}}
$$

(II) Post-inflation era $H>m_{3 / 2}(m \sim H)$ friction: $H=p / t, p=2 / 3(\mathrm{MD}), 1 / 2$ (RD)
vacuum: $V^{\prime}(\varphi)=0 \Leftrightarrow|\varphi| \sim \varphi_{0}(t) \equiv\left(\frac{H^{2} \Lambda^{2 n-6}}{n-1}\right)^{\frac{1}{n-2}}$
Change variables $z=\log t,|\varphi(t)|=\chi(t) \varphi_{0}(t)$

$$
\ddot{\chi}+\left(3 p-\frac{n}{n-2}\right) \dot{\chi}+\tilde{V}(\chi)=0
$$

If $\left(3 p-\frac{n}{n-2}\right) \geq 0, \chi$ oscillates around $\chi \sim(1+\epsilon)^{\frac{1}{2 n-4}}>1$

(b) Illustration of the flavon dynamics

If $n \geq 4$ (MD) or $n \geq 6$ (RD)

$|\varphi|$

$|\varphi|$

$|\varphi|$

