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1. LFV and all that

2. EFT= parametrising LFV at low energy with contact interactions Kuno Okada

3. EFT = path up the mountain ⇔ travels in “scale”

4. results+ questions for you



What is Lepton Flavour Violation?

• three lepton flavours in the Standard Model : e,µ, τ
(flavour ≡ mass eigenstate) different from quarks, where 6 flavours

• LFV ≡ charged lepton flavour change, at a point = ν oscillations don’t count.

source detector

eνµ
e
ν
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• Lepton Flavour Change is interesting:
− none in the Standard Model with mν = 0
− occurs with mν and mixing matrix U
mν renormalisable Dirac: LFV amplitudes GIM-suppressed (like quarks)

A ∝ m2
ν

m2
W

⇒ BR <∼ 10−48

⇒ if see LFV, lepton flavour sector different from quarks!
suppose: heavy leptonic New Physics that can induce observable LFV



EFT as a parametrisation of LFV

parametrise LFV processes via contact interactions. eg at low E,
write down all LFV 2,3,4-point functions that respect QED and QCD:

∑
ζ

∑
O (

νν

+

eµ

+ +

eµ

ff

+ h.c.)g

e

g

µ

∑
ζ = sum over flavours of external legs∑
O = sum over Lorentz structure of operators = {mν, S, P,A, V, T}×chirality .



EFT as a parametrisation of LFV

parametrise LFV processes via contact interactions. eg at low E,
write down all LFV 2,3,4-point functions that respect QED and QCD:

∑
ζ

∑
O (

νν

+

eµ

+ +

eµ

ff

+ h.c.)g

e

g

µ

∑
ζ = sum over flavours of external legs∑
O = sum over Lorentz structure of operators = {mν, S, P,A, V, T}×chirality .

suppose constant {Cζ
O} (no form factors) ⇔ New Particles are heavy

δL =
∑

ζ

∑

O

Cζ
O

vn
Oζ + h.c. (v = 174 GeV)

Oeµee
V,LL = (eγαPLµ)(eγαPLe)

⇒ theoretical parametrisation of the data= express LFV rates in terms of {Cζ
O}.



EFT as a tool to transport coefficients in scale

1. why is what dependent on which “scale”?

2. But loops are small: surely negligeable?
ր data is sensitive to loop effects
ց tree level is not always the best-constrained contribution

3. in practise — how does EFT allow to translate from data to models?
⇔ loop calculations in EFT

4. results: constraints and sensitivities +questions



What is dependent on which scale?

αs(Q
2) larger at small Q2

Q2 ≡ energy scale of the process
⇔ gluon loops are stickier at low energy



What is dependent on which scale?

αs(Q
2) larger at small Q2

Q2 ≡ energy scale of the process
⇔ gluon loops are stickier at low energy

everything (as soon as do a loop calculation) :
masses , couplings, field/particle normalisation ( eg:mb(mh) ∼ 2

3mb(mb))

Also coefficients of LFV contact interactions can change with scale
⇒ climbing the mountain = evolve operator coefficients up in scale.



Peeling off the SM loop corrections

expt measures operator coefficient C̃(µexp), at exptal energy scale ∼ mµ → mτ ,
among external legs at same scale...



Peeling off SM loops

But if I look on shorter distance scale (∼ 1/mW ) I might see

q
q

µ
e

T

loops can mix one interaction into another, not just rescale couplings



But surely loops effects in LFV are negligeable?

Two dipole operators contribute to µ→ eγ:

δLmeg = −4GF√
2
mµ

(
CD,RµRσ

αβeLFαβ + CD,LµLσ
αβeRFαβ

)

BR(µ→ eγ) = 384π2(|CD,R|2 + |CD,L|2) < 5.7× 10−13

⇒ |CD
X | <∼ 10−8

MEG expt, PSI
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δLmeg = −4GF√
2
mµ

(
CD,RµRσ

αβeLFαβ + CD,LµLσ
αβeRFαβ

)

BR(µ→ eγ) = 384π2(|CD,R|2 + |CD,L|2) < 5.7× 10−13

⇒ |CD
X | <∼ 10−8

MEG expt, PSI

How big does one expect CD,X to be? Suppose operator coefficient

n = 1 n = 2
mµ

v2
CD,X ∼ emµ

(16π2)nΛ2
⇒ probes Λ <∼ 100 TeV 10 TeV

mµ

v2
CD,X ∼ ev

(16π2)nΛ2
⇒ probes Λ <∼ 3000 TeV 300 TeV

⇒ µ→ e expts probe multi-loop effects in NP theories with ΛNP ≫ reach of LHC



Why are the LFV bounds so good?

Current µ→ e Branching Ratios <∼ 10−12. Normalised to weak muon decay

BR(µ→ eēe) ≡ Γ(µ→ eēe)

Γ(µ→ eν̄ν)
, Γ(µ→ eν̄ν) =

G2
Fm

5
µ

192π3
=

m5
µ

1536π3v4
≃ 1

2× 10−6sec

...so if Γ(µ→ eēe) ≃
m5

µ

1536π3Λ4
LFV

then BR <∼

{
10−12 ⇒ ΛLFV ∼ 103v ≃ 200 TeV
10−16 ⇒ ΛLFV ∼ 103v ≃ 2000 TeV

Compare to
(g−2)µ

2 ≡ a ≃ αem/π (measure Eqns o Motion: QED amplitude):
torque ~τ = ~µ × ~B; ~µ = g e

2m
~S

∆a ≡ aSM − aexp ≃ 3× 10−9

∼
m2

µ

16π2Λ2
NP

⇒ ΛNP ∼ mt.

because BR is ratio to weak decays



But QED loops are O(α/4π)... surely negligeable correction to tree?

Work top-down = suppose a model that gives only tensor operator at mW :
2
√
2GF CT (uσu)(eσPY µ)
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2
√
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1: forget RGEs Match to nucleons N ∈ {n, p} as C̃NN
T ≃ 〈N |ūσu|N〉Cuu

T
<∼

3
4C
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T

⇒ BR(µA → eA) ≈ BRSD ≈ 1
2
|CT |

2 nuclear matrix elements:
EngelRTO, KlosMGS
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2
√
2GF CT (uσu)(eσPY µ)

1: forget RGEs Match to nucleons N ∈ {n, p} as C̃NN
T ≃ 〈N |ūσu|N〉Cuu

T
<∼

3
4C

uu
T

⇒ BR(µA → eA) ≈ BRSD ≈ 1
2
|CT |

2 nuclear matrix elements:
EngelRTO, KlosMGS

2: include RGEs

T

e

µ

u

u

+... ⇒Cuu
T (uσu)(eσPY µ) S

e

µ

q

q

64αe
4π log mW

mτ
Cuu

T (uu)(ePY µ)

∆Cuu
S (mτ) ∼ 1

7C
uu
T (mW )



But QED loops are O(α/4π)... surely negligeable correction to tree?

Work top-down = suppose a model that gives only tensor operator at mW :
2
√
2GF CT (uσu)(eσPY µ)

1: forget RGEs Match to nucleons N ∈ {n, p} as C̃NN
T ≃ 〈N |ūσu|N〉Cuu

T
<∼

3
4C

uu
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⇒ BR(µA → eA) ≈ BRSD ≈ 1
2
|CT |

2 nuclear matrix elements:

EngelRTO, KlosMGS

2: include RGEs

T

e

µ

u

u

+... ⇒Cuu
T (uσu)(eσPY µ) S

e

µ

q

q

64αe
4π log mW

mτ
Cuu

T (uu)(ePY µ)

∆Cuu
S (mτ) ∼ 1

7C
uu
T (mW )

Then match to nucleons: C̃NN
S = 〈N |ūu|N〉∆Cuu

S ∼ Cuu
T so C̃pp

S
>∼ C̃pp

T ,

BR(µA → eA) ≈ BRSI ∼ Z2|2Cuu
T |2 ∼ 103BRSD

loops can change Lorentz structure/external legs ⇒ different operator whose
coefficient better constrained



Loops matter...are SM; how to include?

ΛNP ≫ TeV

{Z,W, γ, g, h, t, f}

mW ∼ mh ∼ mt

{γ, g, e, µ, τ, u, d, c, s, b}

RGEs: µ ∂
∂µ
~C = ~CΓ

⇒ ~C(mW ) ∼ ~C(mτ) exp{Γ log}

GeV ∼ mc,mb,mτ

data{γ, e, µ, p, n, (π)}



(
why do SM loops in EFT? Its non-renormalisable!

Should calculate in models?

In a renormalisable model for LFV:
+ calculate any observable to arbitrary order in couplings as a function of finite
number of Lagrangian inputs
+ there are public codes!
But:

1. SM loop calns are hard :
multiple perturbative expansions — gauge , loops, (hierarchical) Yukawas, and
mixing angles
ex: dominant contribution of yµeµ̄eH to µ→eγ is at 2-loop (Barr-Zee)

Bjorken+Weinberg,1977

multitude of subsequent model papers use subdominant 1-loop contribution.

doing loop integrals with many massive particles is an art

2. and there is a plethora of models. Each with maaany unknown parameters.



How/why to do loop calculations in EFT ?

loop calculations diverge in all theories (in 4-d)
⇒ 1. “regularise” : ∞ → N

2. “renormalise” :subtract/hide Ns in Lagrangian parameters
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⇒ 1. “regularise” : ∞ → N
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CLFV operators ∝ 1/Λ2
NP are “non-renormalisable”

= there are some loop diagrams it is not interesting to compute,
because generate operators not-in-list (eg ∝ 1/Λ4

NP ), ⇒ more coefficients
can compute SM loops decorating CLFV vertex
has to reproduce results of all heavy models (= that satisfy input assumptions)

(otherwise: why bother doing EFT? And quark flavour people use it...)



How/why to do loop calculations in EFT ?

loop calculations diverge in all theories (in 4-d)
⇒ 1. “regularise” : ∞ → N

2. “renormalise” :subtract/hide Ns in Lagrangian parameters

CLFV operators ∝ 1/Λ2
NP are “non-renormalisable”

= there are some loop diagrams it is not interesting to compute,
because generate operators not-in-list (eg ∝ 1/Λ4

NP ), ⇒ more coefficients
can compute SM loops decorating CLFV vertex
has to reproduce results of all heavy models (= that satisfy input assumptions)

(otherwise: why bother doing EFT? And quark flavour people use it...)

1. Loop calculation simpler in EFT: no heavy masses in loops

2. 1 loop EFT resums
(

1
16π2 log

)n
...so get a piece of 1-loop + piece of 2-loop +...

3. only do the loop calculations once (then works for all heavy New Physics models)

drawback: cannot depend on regularisation/renormalisation for operators, because they are not there in models.

Requires care. eg can only get log divs, because in dim reg, there are only log divs.

lets admit to do SM loops in EFT...



Including the loops in EFT

line up all operator coefficients in row vector ~C, satifies µ ∂
∂µ
~C = ~CΓ. Solution:

~C(mµ) = ~C(mW )G



Including the loops in EFT

line up all operator coefficients in row vector ~C, satifies µ ∂
∂µ
~C = ~CΓ. Solution:

~C(mµ) = ~C(mW )G

CD,X(mµ) = CD,X(mW )

(
1− 16

αe

4π
ln
mW

mµ

)

− αe

4πe
ln
mW

mµ

(
−8

mτ

mµ
Cττ

T,XX + Cµµ
S,XX + C2loop

)

+16
α2
e

2e(4π)2
ln2

mW

mµ

(
mτ

mµ
Cττ

S,XX

)

−8λaT
αe

4πe
ln

mW

2 GeV

(
−ms

mµ
Css

T,XX + 2
mc

mµ
Ccc

T,XX − mb

mµ
Cbb

T,XX

)
fTD

+16
α2
e

3e(4π)2
ln2

mW

2 GeV



∑

u,c

4
mq

mµ
Cqq

S,XX +
∑

d,s,b

mq

mµ
Cqq

S,XX




λ = αs(mW )/αs(2GeV) ≃ 0.44, fTS ≃ 1.45, aS = 12/23, aT = −4/23.



Now what?

ΛNP ≫ TeV

{Z,W, γ, g, h, t, f}

~Cabove = ~CbelowV mW ∼ mh ∼ mt

{γ, g, eµ, τ, u, d, c, s, b}

RGEs: µ ∂
∂µ
~C = ~CΓ

⇒ ~C(mW ) ∼ ~C(mτ) exp{Γ log}

GeV ∼ mc,mb,mτ

data{γ, e, µ, p, n, (π)}



Do we get ellipses in parameter space?

Ideally: more constraints than parameters, build models that sit in overlap of ellipses

⇒How many constraints on how many parameters for µ↔ e contact interactions?

(Reconstructing coeffs with/without signal not same. Here suppose ellipses centered at zero = no

detection. With signal, can displace ellipse, get ring...like unitarity triangle fits)



count operator coefficients, vs exptal constraints on them

At Λexpt: operator basis µ−e conv., µ→ eēe, µ→ eγ Kuno Okada

µ interaction with nucleon N ∈ {n, p} parametrised by 20 4-f operators :

S, V ePXµNN eγαPXµNγαN X ∈ {L,R}
A, T eγαPXµNγαγ5N eσαβPXµNσαβN

P ePXµNγ5N

and 2 dipoles

D eσαβPXµFαβ

which also contribute in µ→ eγ, µ→ eēe. For µ→ eēe

V (eγαPY µ)(eγαPY e) (eγαPY µ)(eγαPXe)

S (ePY µ)(ePY e) chiral basis for the lepton current (relativistic e),

but not for the non-rel. nucleons.
28 operators



The operator basis mτ → mW : 82 operators

operator list:Kuno-Okada, +CiriglianoKitanoOTuzon

Add QCD×QED-invar operators, representing all 3,4 point interactions of µ with e
and flavour-diagonal combination of γ, g, u, d, s, c, b. Y ∈ L,R.

mµ(eσ
αβ

PYµ)Fαβ dim 5

(eγαPYµ)(eγαPY e) (eγαPYµ)(eγαPXe)

(ePYµ)(ePY e) dim 6

(eγαPYµ)(µγαPXµ) (eγαPYµ)(µγαPXµ)

(ePYµ)(µPYµ)

(eγ
α
PYµ)(fγαPY f) (eγ

α
PYµ)(fγαPXf)

(ePYµ)(fPY f) (ePYµ)(fPXf) f ∈ {u, d, s, c, b, τ}
(eσPYµ)(fσPY f)

1

mt

(ePYµ)GαβG
αβ 1

mt

(ePYµ)GαβG̃
αβ dim 7

1

mt

(ePYµ)FαβF
αβ 1

mt

(ePYµ)FαβF̃
αβ

...zzz...but 82 coeffs!

(PX, PY = (1 ± γ5)/2), all operators with coeff −2
√
2GFC.



Constraints from 3 processes: µ → eγ,µ → eēe, µA → eA

Two dipole operators contribute to µ→ eγ:

δLmeg = −4GF√
2
mµ

(
CD,RµRσ

αβeLFαβ + CD,LµLσ
αβeRFαβ

)

BR(µ→ eγ) = 384π2(|CD,R|2 + |CD,L|2) < 5.7× 10−13 ⇒ |CD
X | <∼ 10−8



Constraints from 3 processes: µ → eγ,µ → eēe, µA → eA

Two dipole operators contribute to µ→ eγ:

δLmeg = −4GF√
2
mµ

(
CD,RµRσ

αβeLFαβ + CD,LµLσ
αβeRFαβ

)

BR(µ→ eγ) = 384π2(|CD,R|2 + |CD,L|2) < 5.7× 10−13 ⇒ |CD
X | <∼ 10−8

2dipoles + 6 4-f-ops contribute to µ→ eēe, (most interference between operators ∝ m2
e/m

2
µ)

(ePLµ)(ePLe)

s +e

e

e

µ

(ePRµ)(ePRe)

s +e

e

e

µ

(eγPLµ)(eγPLe)

v +e

e

e

µ

(eγPRµ)(eγPRe)

v +e

e

e

µ

(eγPLµ)(eγPRe)

v +...e

e

e

µ

BR(µ → eēe) =
|CS,LL|2 + |CS,RR|2

8
+ 2|CV,RR|2 + 2|CV,LL|2 + |CV,LR|2 + |CV,RL|2

≤ 10−12 ⇒ |CX| <
∼ 10

−6
√

BR/10
−12

neglected dipole contribution; constrained by µ → eγ

see nothing in µ→ eγ, µ→ eēe, ⇒ all 8 Cs small



µ → e conversion

• µ− captured by Al nucleus, tumbles down to 1s. (r ∼ Zα/mµ
>∼ rAl)

• in SM: muon capture µ+ p→ ν + n
• bound µ interacts with nucleus, converts to e (Ee ≈ mµ)

Γ
p

e

p

µ Dµ

e

Γ = {I, γ5, γ
α, γαγ5, σ}

Γ = {S, P, V , A , T}
Γ

n

e

n

µ

≈ WIMP scattering on nuclei
1) “Spin Independent” rate ∝ A2

(amplitude ∝ ∑
N ∝ A)

2)“Spin Dependent” rate ∼ ΓSI/A
2

(sum over nucleons ∝ spin of only unpaired nucleon)



Constraints on the nucleon operators from µ−e conv.
DavidsonKunoSaporta

DavidsonKunoYamanaka

BRSD(Aµ→ Ae) ∼
∣∣∣C̃NN

A,L + 2C̃NN
T,R

∣∣∣
2

+
∣∣∣C̃NN

A,R + 2C̃NN
T,L

∣∣∣
2

(N odd)

BRSI(Aµ→ Ae) ∝ |C̃pp
V,RV

(p)
A +C̃

′pp
S,LS

(p)
A +C̃nn

V,RV
(n)
A +C̃

′nn
S,LS

(n)
A +CD,LD|2 + {L↔ R}

Can distinguish SD vs SI, L vs R. But if observe SI conversion, how to know if is
due to scalar/vector operator on n or p?

KitanoKoikeOkada

S
(p)
A , V

(p)
A ∼

∫
d3xψ̃1s

µ |fp(x)|2ψ̃∗
e(p̄{1, γ0}p)



The overlap integrals of Kitano, Koike, Okada



Constraints on the nucleon operators from µ−e conv.
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DavidsonKunoYamanaka

BRSD(Aµ→ Ae) ∼
∣∣∣C̃NN

A,L + 2C̃NN
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2

+
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∼ Z2
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∣∣∣
2

+ Z2
∣∣∣~CL · v̂A

∣∣∣
2

~vA ≡
(
V

(p)
A , S

(p)
A , V

(n)
A , S

(n)
A ,DA

)

Can distinguish SD vs SI, L vs R. But if observe SI conversion, how to know if is
due to scalar/vector operator on n or p?

KitanoKoikeOkada

S
(p)
A , V

(p)
A ∼

∫
d3xψ̃1s

µ |fp(x)|2ψ̃∗
e(p̄{1, γ0}p)

different “target vectors” ~vA for different nuclear targets
target vectors “live” in coefficient space, like ~C = (C̃pp

V , C̃pp
S , C̃nn

V , C̃nn
S , (D))

1.1st exptal search (eg Gold) probes ~C ‖ ~vAu

2.next target, suff large component ⊥ Gold



Current data+ theory uncertainty ∼ 10%: two targets give ∆θ > 0.2
BR(µAu → eAu) ≤ 7× 10−13 (Au : Z = 79)
BR(µT i→ eT i) ≤ 4.3× 10−12 (T i : Z = 22)

Z         
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~vA = (V
(p)
A , S

(p)
A , V

(n)
A , S

(n)
A ), and BR ∝ |~vA · ~C|2

~vAu · ~vZ ≡ |~vAu||~vZ| cos θ ...plot θ on vertical axis
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Can distinguish SD vs SI, L vs R. But if observe SI conversion, how to know if is
due to scalar/vector operator on n or p?
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S
(p)
A , V

(p)
A ∼

∫
d3xψ̃1s

µ |fp(x)|2ψ̃∗
e(p̄{1, γ0}p)

different “target vectors” ~vA for different nuclear targets
target vectors “live” in coefficient space, like ~C = (C̃pp

V , C̃pp
S , C̃nn

V , C̃nn
S , (D))

1.1st exptal search (eg Gold) probes ~C ‖ ~vAu

2.next target, suff large component ⊥ Gold

⇒ three (suitable) nuclear targets (+improve theory caln) could probe 3 combinations of
{C̃pp

V , C̃pp
S , C̃nn

V , C̃nn
S }



In the future...with a 5% theory uncertainty:

First target of Mu2e, COMET: Aluminium (Z=13, A=27)
v̂Al ≈ 1

2(1, 1, 1, 1) (recall C̃
pp
V , C̃

pp
S , C̃nn

V , C̃nn
S )

basis of three other “directions”:

v̂np ≡ 1

2
(−1,−1, 1, 1)

v̂V S ≡ 1

2
(1,−1, 1,−1)

v̂IsoSV ≡ 1

2
(−1, 1, 1,−1)

Z
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probe 3 combinations of SI coeffs



What to learn at Λexp: setting constraints from µA→ eA,µ→ eγ + µ→ eēe

parametrise with 20 nucleon ops (8 SI: S,V) + (12 SD: P,A,T)
+2 dipole operators
+6 four-lepton operators

1. constrain 2 dipoles +6 4ℓ coeffs with µ→ eγ + µ→ eēe

2. Spin Indep now: constrain 4 combinations of 8 {S, V } coefficients
SI future: constrain 6 combinations of 8 {S, V } coefficients

3. Spin-Dependent, now: (?) 2 counstraints? (Ti?)
future: 4 → 8 constraints ?

n vs p by comparing odd-p, A vs T vs P ⇔ dedicated nucl.caln.)

⇒ 28 coefficients,

{
now 12 → 14
future 18 → 22

}
constraints

...so what to do?
(no ellipse in coeff space even at exptal scale)



EFT as a tool to travel in scale

1. why is what dependent on which “scale”?

2. But loops are small: surely negligeable?

• data is sensitive to loop effects
• tree level is not always the dominant contribution

3. in practise — how does EFT allow to translate from data to models?
⇔ loop calculations in EFT

4. results: constraints and sensitivities+questions:

what is useful for you?



Can still calculate sensitivities...

sensitivity: “one at a time bound” = value below which a parameter is to small to
be seen in expt.
But it could be larger than this, if it is cancelled by another contribution.

coefficient µ → eγ µ → eēe µ−e conv.

|CD,X| 1.12 × 10−8 4.30 × 10−7 2.35 × 10−7

|Cee
V,XX| 1.10 × 10−4 7.80 × 10−7 1.86 × 10−5

|Cee
V,XY | 2.55 × 10−4 9.34 × 10−7 3.77 × 10−5

|Cee
S,XX| 1.73 × 10−4 2.8 × 10−6 (3.64 × 10−3)

|Cµµ
V,XX| 1.10 × 10−4 5.60 × 10−5 1.85 × 10−5

|Cµµ
V,XY | 2.56 × 10−4 1.12 × 10−4 3.77 × 10−5

|Cµµ
S,XX| 8.24 × 10−7 (1.58 × 10−5) (1.73 × 10−5)

|Cττ
V,XX| 3.80 × 10−4 1.95 × 10−4 1.24 × 10−5

|Cττ
V,XY | 4.40 × 10−4 1.91 × 10−4 1.25 × 10−5

|Cττ
S,XX| 5.33 × 10−6 1.02 × 10−4 1.12 × 10−4

|Cττ
S,XY | — — —

|Cττ
T,XX| 1.10 × 10−8 (4.20 × 10−7) (2.30 × 10−7)

Table 1: Current sensitivities of µ → eγ, µ → eēe, and µ−e conv. to the coefficients, at mW ,

of QCD×QED-invariant 2- and 4-lepton operators. X, Y ∈ {L,R}, X 6= Y .



But sensitivity = “how small could you see”...what about constraints?

constraint = limit on coefficient beyond which it is incompatible with data.
Irrespective of other coefficients.
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What to do?

• argue some cancellations can only be accidental(≈reduce A + B → [20%][A + B])

⇔what is “natural” in EFT?

eg coupling g2 cannot cancel log(M/m)

coefficients which run under QCD cannot cancel against those who do not...

allows to increase number of constraints (not to 82)

• additional observables who can set restrictive constraints?



Can give experimental bounds in terms of high-scale coefficients ...

recall: SI µ−e conv. constrains at tree level/at 2 GeV 14 quark coefficients
(+dipoles and di-gluonsnot written here)

√
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also constraint on coeffs with L↔ R (the chirality of e)

matched nucleon and quark coefficients at 2 GeV using lattice {GNq
S }



at one loop, 44 (2 dipoles+2digluons) of 82 operators contribute to µ−e conv.
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also constraint on coeffs with L↔ R (the chirality of e)
quark coefficients at mW

log ≡ log(mW/2GeV) ≃ 3.7,
λ = αs(mW )/αs(2GeV) ≃ 0.44, fTS ≃ 1.45, aS = 12/23, aT = −4/23.

a public code?
what would you like it to do? top-down? bottom-up? ?



Summary

Loops are important for Lepton Flavour Change, because they allow to transform
contact interactions that are difficult to probe experimentally, into interactions that
are stringently constrained.

If the ratio mSM/ΛNP is “small enough” EFT is an ideal tool to account for SM
loop effects.
“small enough” = such that dimension eight operators can be neglected, and the
log-enhanced part of loops is the dominant part
EFT is ideal because the loop calculations are trivial, and only have to be calculated
once, for all heavy theories.

An EFT analysis can give the “sensitivity” of any selected experimental process to
any high-scale operator coefficient (at some chosen scale) —is a paper/webpage
giving these numbers useful?
(sensitivity = “one-at-a-time” bound)

An EFT analysis can also give the constraints on high-scale coefficients arising
from experimental constraints — are these interesting? If so, in what format?
Code/formulae/webpage/...?



BackUp



What is Effective Field Theory?

• EFT = recipe to study observables at scale ℓ
1. choose appropriate variables to describe relevant dynamics

2. 0th order interactions, by sending all parameters

{
L≫ ℓ → ∞
δ ≪ ℓ → 0

3. then perturb in ℓ/L and δ/ℓ

Example : interactions in the early Universe of age τU (τU ∼ 10−24 sec)

⋆ processes with τint ≫ τU ...neglect!
⋆ processes with τint ≪ τU ...assume in thermal equilibrium!
⋆ processes with τint ∼ τU ...calculate this dynamics
⋆ can then do pert. theory in slow interactions and departures from thermal equil.

Example : low energy LFV due to heavy New Particles (ΛNP ≫ mW ≫ GeV)
⋆ SM particles (all masses ≪ mW ) are dynamical variables
⋆ renormalisable interactions = QCD*QED
⋆ can include small SM masses in pert. theory (eg me/mµ), + heavy particle
effects as conotact interactions (Fermi interaction, LFV contact interactions...)



Some LFV processes and bounds

some processes current constraints on BR future sensitivities

µ→ eγ < 4.2× 10−13 6× 10−14 (MEG)
µ→ eēe < 1.0× 10−12(SINDRUM) 10−16 (2018, Mu3e)
µA→ eA < 7× 10−13 Au, (SINDRUM) 10−16 (Mu2e,COMET)

10−18 (PRISM/PRIME)

K0
L → µē < 4.7× 10−12 (BNL)

K+ → π+µ̄e < 1.3× 10−11 (E865) 10−12 (NA62)

τ → ℓγ < 3.3, 4.4× 10−8 few×10−9 (Belle-II)
τ → 3ℓ < 1.5− 2.7× 10−8 few×10−9 (Belle-II, LHCb?)
τ → eφ < 3.1× 10−8 few×10−9 (Belle-II)

h→ τ±e∓ < 6.9× 10−3

Z → e±µ∓ < 7.5× 10−7
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target misalignment with dipole
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