Mid-term report

D.Minchenko Advisors: prof.Sumisawa, Dr.Liventsev

Introduction

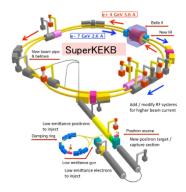
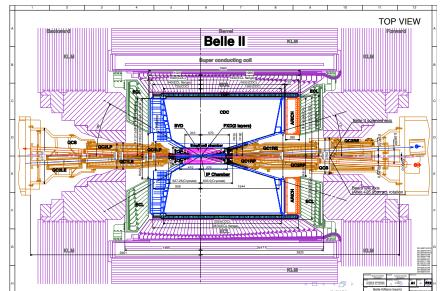
- From Ukraine, Kyiv, Taras Shevchenko National University of Kyiv
- 3 year undergraduate
- prof. Sumisawa host researcher
- Started work as summer student in Belle 2 experiment EKLM group under supervision of Dr.Liventsev

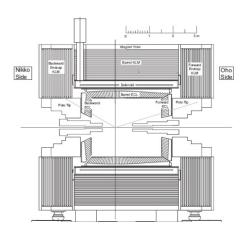
Overview

- The Belle II detector is a general purpose spectrometer designed to study the decay of BB pairs created via e^+e collisions by the SuperKEKB particle accelerator.
- The detector aims at full reconstruction of all particles and provides an acceptance, in the lab frame, of $\theta=17^\circ$ to 150° in the polar angle and $\varphi=0^\circ$ to 360° in the azimuth angle.

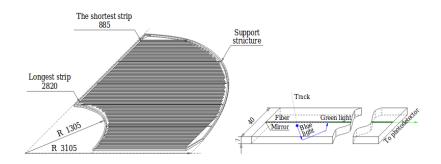
SuperKEKB

- The SuperKEKB has a circumference of 3km and is located 10m below the ground
- It is an asymmetric e^+ e collider designed to operate at a center of mass energy of $\sqrt{s} = 10.58\,\text{GeV}$ with the e^+ and e beams operating at 3.5 GeV and 7 GeV respectively.

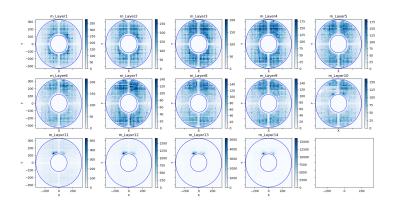



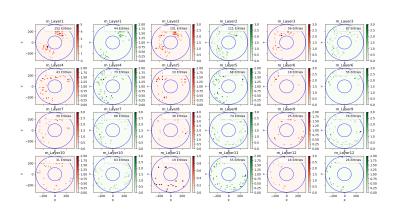

Figure 3.1 – Schematic of the SuperKEKB Accelerator [13].

Belle // detector



The Belle 2 KLM


- The KLM is designed to detect and distinguish muons from long-lived neutral kaons, K_L^0 . It is the last subsystem in the detector, located right after the ECL, and sits outside the 1.5 T magnetic field of the solenoid.
- The detector consists of analternating sandwich of 4.7cm thick iron plates and active detector alamants

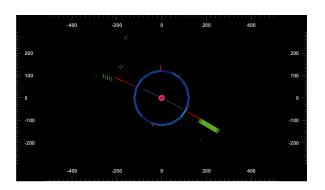


EKLM

Before B2GM

Write BASF2 module

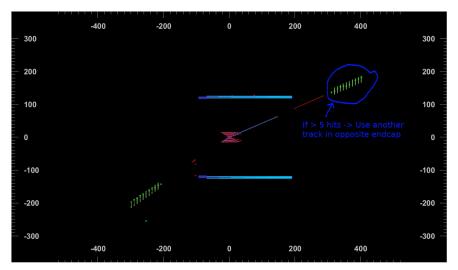
- Module should estimates each EKLM layer CDC matching efficiency
- Module consists of source and include directories
- Should be implemented in C++



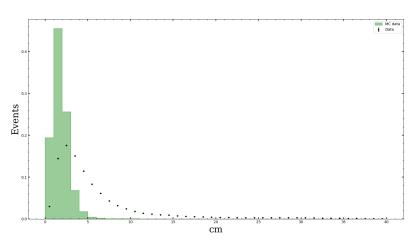
CDC matching efficiency of EKLM

- Extrapolate CDC tracks into the EKLM volume
- Determine position of extHit in each layer
- ullet Match EKLM hit with track hit if $distance < d_{max}$ in same layer and same endcap
- Efficiency defined as $\varepsilon = N_{matched}/N_{extrapolated}$

Hits


- Digits (1dhits)
- Hit2d
- ExtHit

Selection variables

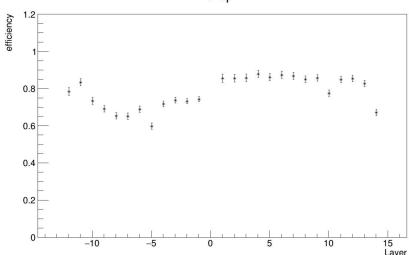

Variable	Cut	Comment
nTracks	2	Only 2 tracks required
maxAngleTTLE	< 0.785	HLTmumu2trk cut
nCDCHits	nCDCHits > 4	CDC hits
dz	abs(dz) < 5cm	particle came from IP
dr	abs(dr) < 1cm	particle came from IP
clusterE	clusterE > 0	lost energy in ECL
clusterEoP	cluster EoP < 0.8	<u>clusterE</u>
My own MuID	5 hits	To find muons events

My 'MuID'

Trying to find optimal d_{max}

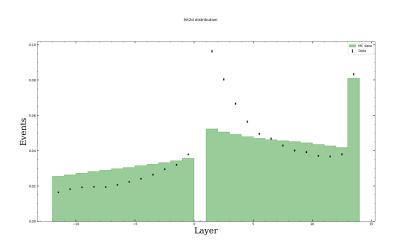
l used:

- bucket6 10 runs HLTmumu2trk skims
- $ee->\mu\mu\gamma$ MC sample genereted by Giuseppe Finocchiaro for BKLM study


Module output

 Module make such root file with some characteristics

Efficiency by layers


Efficiency by layers

Status

- Was implemented
 - Main part of module was written
 - Found and added MC data
 - Compare parameters with MC
- In progress
 - Need to solve some technical problems (mismatch of 2d hits for example)
 - Need to commit module in some of basf2 brunches?
 - Next step use 1D hits

Hit2ds mismatch

