The bosonic matrix model with 9

matrices has a first order phase

transition at finite temperature

Enrico Rinaldi*
 The Model

Thermal Phase Transition in Yang-Mills matrix models

We study the 1D gauged bosonic matrix model with $d=9$ matrices, which is the bosonic version of the famous BFSS matrix model ${ }^{[1]}$, related to the gauge/gravity duality. This model is also obtained as the high-temperature limit of the 2D maximal supersymmetric Yang-Mills compactified on S^{1}, which has a dual gravitational description.

$$
S=N \int_{0}^{\beta} d t \operatorname{Tr}\left\{\frac{1}{2}\left(D_{t} X_{I}\right)^{2}-\frac{1}{4}\left[X_{I}, X_{J}\right]^{2}\right\}
$$

Phase transitions

The phase transition in this model has been studied before ${ }^{[2]}$ at finite matrix size \boldsymbol{N}, and finite lattice spacing L^{-1}. This 1D bosonic model admits an analytical treatment at large N and large number of matrices $d^{[3]}$.
-Analytical results at large d predict two transitions at close temperatures T_{1} and T_{2}, one of $2^{\text {nd }}$ order and one of 3 rd order. Is $d=9$ large enough?
\uparrow Numerical results at $N=32$ suggest a qualitatively similar picture. Is $\boldsymbol{N}=32$ large enough?

We discovered a different phase structure in the large- \boldsymbol{N} limit at $d=9$, with a single $1^{\text {st }}$ order transition:

The distribution of the Polyakov loop eigenvalues is non uniform and non gapped:

$$
\rho_{\mathrm{p}}(\theta)=\frac{1}{2 \pi}\left(1+\frac{M}{N} \cos \theta\right)
$$

T. Banks, W. Fischler, S. H. Shenker, and L. Susskind, "M theory as a matrix model: A Conjecture," Phys. Rev. D55 (1997) 5112-5128 2. N. Kawahara, J. Nishimura, and S. Takeuchi, "Phase structure of matrix quantum mechanics at finite temperature," JHEP 10 (2007) 097 3. G. Mandal, M. Mahato, and T. Morita, "Phases of one dimensional large N gauge theory in a I/D expansion," JHEP 02 (2010) 034 4. M. Hanada, G. Ishiki, and H. Watanabe, "Partial Deconfinement", JHEP 03 (2019) 145.

*in collaboration with:
Georg Bergner, Evan Berkowitz, Norbert Bodendorfer,
Masanori Hanada, Stratos Pateloudis, Andreas Schafer,
Pavlos Vranas

