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Introduction

Motivation

isospin-asymmetry:
nI = nu − nd 6= 0 in

• systems with charged pions

• neutron stars

• heavy-ion collisions (N>Z)

Pure isospin system

rich conjectured phase diagram:

• vacuum (white)

• quark-gluon plasma

• pion condensate (BEC)

• BCS phase

lattice simulations are feasible
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Pion condensation: spontaneous symmetry breaking

QCD with two light quarks M = /D + mud + µIγ0τ3 + iλγ5τ2

chiral symmetry breaking pattern SU(2)V → U(1)τ3 → ∅
problem: cannot directly observe SSB in finite volumes

• pion condensate
〈
ψ̄γ5τ1,2ψ

〉
= 0 (Goldstone mode)

• accumulation of zero eigenvalues � slowdown of algorithm

solution: add explicit unphysical breaking λ (pionic source)

• can indirectly observe spontaneous symmetry breaking

• no zero eigenvalues

need to extrapolate λ → 0 for physical results

ψ̄γ5τ2ψ

ψ̄γ5τ1ψ

Setup and Observables

Partition function

Z =

∫
D[U ] e−βSG (detMud)

1/4 (detMs)
1/4

with improved gauge action and staggered quarks at physical masses

Mud =

(
/D(µI) + mud λη5
−λη5 /D(−µI) + mud

)
, Ms = /D(0) + ms

No sign problem: Mud is τ1η5-hermitian

Observables

Measures for the BEC phase boundary are pion and chiral condensate, as well as isospin density

〈π±〉λ =
T

V

∂ logZλ
∂λ

, 〈ψ̄ψ〉λ =
T

V

∂ logZλ
∂mud

, 〈nI〉λ =
T

V

∂ logZλ
∂µI

.

Reweighting in λ

Instead of taking a naive λ-extrapolation limλ→0 〈O〉λ, we measure the operators O directly at λ = 0
and reweight the gauge configurations according to

〈O〉0 =
〈ORλ〉λ
〈Rλ〉λ

, Rλ =

[
detMud(µI , λ)

detMud(µI , 0)

]1/4

∈ R.

Note that measuring the pion condensate at λ = 0 is only viable via employing a Banks-Casher-type
relation similar to [Kanazawa, Wettig, Yamamoto ’11]. An advantage of reweighting is that it can easily be
combined with reweighting in other parameters (e.g µ,md, c.f. right column), since R = RλRµRm.
We use leading order reweighting in λ for speedup, without losing accuracy [Brandt, Endrödi, Schmalzbauer ’18].

Detection of BCS phase

Status
• We observe large values of the Polyakov loop

within the pion condensation phase, which hints
to a superconducting ground state with decon-
fined quarks, the BCS phase

• [Son, Stephanov ’01] (χPT) and [Adhikari, Andersen, Kneschke

’18] (quark meson model) predict this BEC-BCS
crossover to take place at T = 0, large µI ; we see
it at T > 0 and intermediate µI (via Ploop)
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• [Kanazawa, Wettig, Yamamoto ’14] derive that the BCS phase features a BCS gap ∆2
BCS ∝ ρ(0) at large µI ,

with ρ(ν) the density of the complex dirac spectrum

• Motivation to measure ρ(0) as a function of µI to identify the BCS phase

Procedure
• spectrum ρ(ν) measured close to the origin via SLEPc library employing the Krylov-Schur method

• simulations are carried out away from the chiral limit, investigate ρ(m + i · 0) (denoted by red dot)

• m + i · 0 is within the spectrum in the pion condensation phase

• look for sub-structures in the spectral density

• match µI- and T - dependence of ρ(m + i · 0) with characteristic points of Polyakov loop

• study T < 100 MeV and extrapolate λ→ 0

Dependence of BEC phase boundary on µB, µS

Idea

Explore the phase diagram for finite values of µB (µu,d = µB ± µI) and µs and study the change
in the pion condensation phase boundary, originally at µI,c = mπ/2. The corresponding reweighting
factors

T = 0

µB

µS

µI

RµB

Rµs

?

?

vacuum π cond.µI,c

RµB =

[
detMud(µu, µd;mud,mud)

detMud(µI ,−µI ;mud,mud)

]1/4

Rµs =

[
detMs(µs;ms)

detMs(0;ms)

]1/4

can easily be computed with the determinant re-
duction formula (see below). We want to distin-
guish between
• vacuum 〈π〉 = 0, 〈nI〉 = 0, 〈ψ̄ψ〉 = const.,

• π cond. 〈π〉 6= 0, 〈nI〉 6= 0, 〈ψ̄ψ〉 < 〈ψ̄ψ〉vac.Determinant reduction

After the λ-reweighting, the fermion determinant factorizes and one can use the determinant reduc-
tion formula [Toussaint ’90][Fodor, Katz ’02]

det
(
/D(µ) + m

)
= e−3VsLtµ det

(
P (m)− eLtµ

)
= e−3VsLtµ

6Vs∏
i=1

(
pi − eLtµ

)
to compute the individual terms seperately. Once the matrix P (m) is constructed and its eigenvalues pi
are determined, the fermion determinant is an analytic function of µ. Together with the reduction
of the dimension of the eigenvalue problem by a factor Nt/2, this gives a tremendous boost in terms of
computational costs compared to recalculating the full spectrum for each value of µ.

Reliability of reweighting

The fluctuations in the phase φ of the
reweighting factor, which is a measure for
the sign problem, are only mild close to
the isospin axis and for µB+µI < mπ/2.
If the sign problem is severe, one has to be
careful whether the results can be trusted.
Therefore, we will only show results with
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meaningful statists (Z ∈ R+ within 3σ) and sufficient overlap γ [Csikor et. al. ’04] [Schmidt ’04].

Results

To improve our estimates, we combine
multiple auxiliary ensembles. The BEC
phase boundary bends towards higher
values of µI for µB > 0 and seems to be
unaffected by µS, before the sign prob-
lem gets too severe. We still need to un-
derstand the absence of the silver blaze
phenomenon near the µB axis. 0.0 0.5 1.0
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Complementary approach: decoupling of quarks

An additional idea to approach a purely baryonic system is to decouple one quark by increasing its
mass. Effectively, the isospin system is broken up into a baryonic system, together with the emergence of
the sign problem. A sketch of a possible scenario is given below for md → ∞. All chemical potentials
are held fixed.
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Since the quark masses are no longer the same, md > mu = mud, we analyze the quark condensates
ūu, d̄d separately. Instead of working with a reduced determinant, we compute the full dirac spectrum,
since it allows for an analytic m-dependence. To achieve a Nf = 2 + 1 target ensemble, we start with
two additional auxiliary quarks and decouple those (ma in right plot). To avoid drastic changes in the
system (a, T,mπ, ψ̄ψ), we simulate at higher bare quark mass to account for changes in the lattice scale
and LCP. Another possibility would be to adjust β accordingly.


