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Motivation for the canonical formulation

▸ Consider the grand-canonical partition function at finite µ:

ZGC(µ) = Tr [e−H(µ)/T ] = Tr∏
t

Tt(µ)

▸ The sign problem at finite density is a manifestation of huge
cancellations between different states:

▸ all states are present for any µ and T
▸ some states need to cancel out at different µ and T

▸ In the canonical formulation:

ZC(Nf ) = TrNf
[e−H/T ] = Tr∏

t

T
(Nf )

t

▸ dimension of Fock space tremendously reduced
▸ less cancellations necessary:

▸ e.g. ZQCD
C (NQ) = 0 for NQ ≠ 0 mod Nc
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▸ dimension of Fock space tremendously reduced
▸ less cancellations necessary:

▸ e.g. ”Silver Blaze” phenomenon realised automatically



Motivation for canonical formulation of QCD

Canonical transfer matrices can be obtained explicitly!

▸ based on the dimensional reduction of the QCD fermion
determinant [Alexandru, Wenger ’10; Nagata, Nakamura ’10]

Outline:

▸ Overview

▸ Definition of the transfer matrices in canonical formulation

▸ Relation to fermion loop and worldline formulations

▸ Hubbard model and Super Yang-Mills QM

▸ Schwinger model
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Overview

▸ Identification of transfer matrices:

▸ Dimensional reduction in QCD [Alexandru, UW ’10]

▸ SUSY QM and SUSY Yang-Mills QM
[Baumgartner, Steinhauer, UW ’12-’15]

▸ solution of the sign problem
▸ connection with fermion loop formulation

▸ QCD in the heavy-dense limit
▸ absence of the sign problem at strong coupling
▸ solution of the sign problem in the 3-state Potts model

[Alexandru, Bergner, Schaich, UW ’18]

▸ Hubbard model [Burri, UW ’19]

▸ HS field can be integrated out analytically

▸ Nf = 1,2 Schwinger model [Bühlmann, UW ’19]



General construction

▸ For a generic Hamiltonian H with µ ≡ {µσ} one has

ZGC(µ) = Tr [e−H(µ)/T ]

= ∑
{Nσ}

e−∑σ Nσµσ/T
⋅ ZC({Nσ})

where ZC({Nσ}) = Tr∏t T
({Nσ})

t .

▸ Trotter decomposition and coherent state representation yields

ZGC(µ) = ∫ Dφe
−Sb[φ]

∫ Dψ
†
Dψe−S[ψ

†,ψ,φ;µ]

with Euclidean action Sb and fermion matrix M

S[ψ†, ψ, φ;µ] =∑
σ

ψ†
σM[φ;µ]ψσ .



Fermion matrix and dimensional reduction

▸ The fermion matrix M[φ;µσ] has the generic structure

M =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

B0 e−µσC ′

0 0 . . . ±eµσCNt−1

eµσC0 B1 e−µσC ′

1 0
0 eµσC1 B2 ⋱ ⋮

⋮ ⋱ ⋱

BNt−2 e−µσC ′

Nt−2

±e−µσC ′

Nt−1
0 eµσCNt−2 BNt−1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

for which the determinant can be reduced to

detM[φ;µσ] =∏
t

det B̃t ⋅ det (1 ∓ eNtµσT [φ])

where T [φ] = TNt−1 ⋅ . . . ⋅ T0.

▸ M[φ;µσ] is (Ls ⋅Nt) × (Ls ⋅Nt), while T [φ] is Ls × Ls .



Fermion matrix and canonical determinants

▸ Fugacity expansion

detM[φ;µσ] =∑
Nσ

e−Nσµσ/T
⋅ det NσM[φ]

yields the canonical determinants

det NσM[φ] =∑
J

detT /J /J
[φ] = Tr [∏

t

T
(Nσ)

t ] .

where detT /J /J is the principal minor of order Nσ.

▸ States are labeled by index sets J ⊂ {1, . . . ,Ls}, ∣J ∣ = Nσ
▸ number of states grows exponentially with Ls at half-filling

Nstates = (
Ls
Nσ

) = Nprincipal minors

▸ sum can be evaluated stochastically with MC



Transfer matrices

▸ Use Cauchy-Binet formula

det(A ⋅B)
/I /K

=∑
J

detA /I /J
⋅ detB /J /K

to factorize into product of transfer matrices

▸ Transfer matrices in sector Nσ are hence given by

(T
(Nσ)

t )IK = det B̃t ⋅ det [Tt]
/I /K

with Tr [∏t T
(Nσ)

t ] = (T
(Nσ)

Nt−1
)IJ ⋅ (T

(Nσ)

Nt−2
)JK ⋅ . . . ⋅ (T

(Nσ)

0 )LI .

▸ Finally, we have

ZC({Nσ}) = ∫ Dφ e
−Sb[φ]∏

t

det B̃t ⋅∑
{Jσ

t }

∏
t

(∏
σ

det [T σt ]
/Jσ
t−1 /J

σ
t )

where ∣Jσt ∣ = Nσ and JσNt
= Jσ0 .



Example: Hubbard model

▸ Consider the Hamiltonian for the Hubbard model

H(µ) = − ∑
⟨x,y⟩,σ

tσ ĉ
†
x,σ ĉy ,σ +∑

x,σ

µσNx,σ +U∑
x

Nx,↑Nx,↓

with particle number Nx ,σ = ĉ†
x ,σ ĉx ,σ.

▸ After Trotter decomposition and Hubbard-Stratonovich
transformation we have

ZGC(µ) = ∫ Dψ
†
DψDφρ[φ]e−∑σ S[ψ†

σ,ψσ,φ;µσ]

with S[ψ†
σ, ψσ, φ;µσ] = ψ

†
σM[φ;µσ]ψσ, and hence

= ∫ Dφρ[φ]∏
σ

detM[φ;µσ] .



Example: Hubbard model

▸ The fermion matrix has the structure

M[φ;µσ] =

⎛
⎜
⎜
⎜
⎝

B 0 . . . ±eµσC(φNt−1)

−eµσC(φ0) B . . . 0
⋮ ⋱ ⋱ ⋮

0 . . . −eµσC(φNt−2) B

⎞
⎟
⎟
⎟
⎠

for which the determinant can be reduced to

detM[φ;µσ] = detBNt ⋅ det (1 ∓ eNtµσT [φ])

where T [φ] = B−1C(φNt−1) ⋅ . . . ⋅B
−1C(φ0).

▸ Fugacity expansion yields the canonical determinants

detMNσ [φ] =∑
J

detT /J /J
[φ] = Tr [∏

t

T
(Nσ)

t ] .

where detT /J /J is the principal minor of order Nσ.



Example: Hubbard model

▸ Transfer matrices are hence given by

(Tt)IK = detB ⋅ det [B−1
⋅ C(φt)]

/I /K

= detB ⋅ det(B−1
)
/I /J
⋅ detC(φt)

/J /K

▸ Moreover, using the complementary cofactor we get

detB ⋅ det(B−1
)
/J /I
= (−1)p(I ,J) detB IJ

where p(I , J) = ∑i(Ii + Ji) and HS field can be integrated out,

detC(φt)
/J /K

= δJK∏
x∉J

φx,t Ô⇒ ∏
x

wx,t ≡W ({Jσt }) .

▸ Finally, only sum over discrete index sets is left:

ZC({Nσ}) = ∑
{Jσ

t }

∏
t

(∏
σ

detBJσ
t−1J

σ
t )W ({Jσt }) , ∣Jσt ∣ = Nσ



Example: Hubbard model

ZC({Nσ}) = ∑
{Jσ

t }

∏
t

(∏
σ

detBJσ
t−1J

σ
t )W ({Jσt })

index sets Jt :

{3,6}

{4,5}

{4,5}

{2,7}

{2,7}

{3,7}



Example: Hubbard model

▸ In d = 1 dimension the ’fermion bags’ detB IJ can be
calculated analytically:

and one can prove that

detB IJ
≥ 0 for open b.c.

⇒ there is no sign problem

▸ For periodic b.c. there is no sign problem either, because

Z pbc
C (Ls →∞) = Z obc

C (Ls →∞)



Example: Hubbard model

▸ Since our formulation is factorized in time, we have

E0 = lim
Lt→∞

ZC(Lt)

ZC(Lt+1)
= ⟨∏

σ

(
detBJσ

t−1J
σ
t+1

detBJσ
t−1J

σ
t detBJσ

t Jσ
t+1

)
1

W ({Jσt })
⟩

ZC (Lt+1)
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Grand canonical gauge theories

▸ Consider gauge theory, e.g. Schwinger model or QCD:

ZGC(µ) = ∫ DUDψDψ e−Sg [U]−Sf [ψ,ψ,U;µ]

where
Sg [U] = β∑

P

[1 −
1

2
(UP +U†

P)] ,

Sf [ψ,ψ,U;µ] = ψM[U;µ]ψ .

▸ for QCD: d = 4,U ∈ SU(Nc)
▸ for the Schwinger model: d = 2,U ∈ U(1)

▸ Integrating out the Grassmann fields for Nf flavours yields

ZGC(µ) = ∫ DU e−Sg [U]
(detM[U;µ])Nf .



Dimensional reduction of gauge theories

▸ Consider the Wilson fermion matrix for a single quark with
chemical potential µ:

M±(µ) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

B0 P+A
+

0 ±P−A
−

Lt−1

P−A
−

0 B1 P+A
+

1

P−A
−

1 B2 ⋱

⋱ ⋱

P+A
+

Lt−2

±P+A
+

Lt−1
P− BLt−1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

▸ Bt are (spatial) Wilson Dirac operators on time-slice t,
▸ Dirac projectors P± =

1
2
(I ∓ Γ4),

▸ temporal hoppings are

A+t = e+µ ⋅ Id×d ⊗ Ut = (A−t )
−1

▸ all blocks are (d ⋅Nc ⋅ L
3
s × d ⋅Nc ⋅ L

3
s )-matrices



Dimensional reduction of gauge theories

▸ Reduced Wilson fermion determinant is given by

detMp,a(µ) =∏
t

detQ+

t ⋅ det [I ± e+µLtT ]

where T is a product of transfer matrices given by

T =∏
t

U
+

t−1 ⋅ (Q
−

t )
−1
⋅Q+

t ⋅ U
−

t

with
Q±

t = BtP± + P∓, U
±

t = UtP± + P∓

▸ Fugacity expansion yields with Nmax
Q = d ⋅Nc ⋅ L

3
s

detMa(µ) =
Nmax

Q

∑
NQ=−Nmax

Q

eµNQ/T
⋅ detMNQ



Canonical formulation of gauge theories

Canonical transfer matrices of gauge theories

detMNQ
=∏

t

detQ+
t ⋅∑

A

detT AAAA = Tr∏
t

T
(NQ)

t

▸ sum is over all index sets A ∈ {1,2, . . . ,2Nmax
Q } of size NQ ,

▸ i.e. the trace over the minor matrix of rank NQ of T

▸ Provides a complete temporal factorization of the fermion
determinant.



Relation between quark and baryon number in QCD

▸ Consider Z(Nc)-transformation by zk = e2πi ⋅k/Nc ∈ Z(Nc):

U4(x)→ U4(x)
′
= (1 + δx4,t ⋅ (zk − 1)) ⋅U4(x)

▸ Hence, Ux4 transforms as Ux4 → U
′

x4 = zk ⋅Ux4 , while for all others
U ′t≠x4 = Ut≠x4 .

▸ As a consequence we have

detMNQ
→ detM ′

NQ
=∏

t

detQ+

t ⋅∑
A

det(zk ⋅ T )AAAA

= z
−NQ

k ⋅ detMNQ

and summing over zk therefore yields

detMNQ
= 0 forNQ ≠ 0 modNc

▸ reduces cancellations by factor of Nc



Gauss’ law in the Nf = 1 Schwinger model

▸ Consider U(1)-transformation by e iα ∈ U(1):

e iφ2(x) → e iφ2(x)′ = (1 + δx2,t ⋅ (e
iα
− 1)) ⋅ e iφ2(x)

▸ Hence, Ux2 transforms as Ux2 → U
′

x2 = e iα ⋅ Ux2 , while for all
others U ′t≠x2 = Ut≠x2 .

▸ As a consequence we have

detMNQ
→ detM ′

NQ
=∏

t

detQ+

t ⋅∑
A

det(e iα ⋅ T )AAAA

= e−iαNQ ⋅ detMNQ

and integrating over α therefore yields

detMNQ
= 0 forNQ ≠ 0

▸ only zero charge sector is allowed!



Nf = 1 Schwinger model in d = 2

▸ Distribution of principal minors:
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Nf = 1 Schwinger model in d = 2

▸ Distribution of maximal principal minors:



Nf = 1 Schwinger model in d = 2

▸ Distribution of maximal principal minors (ground state):



Nf = 1 Schwinger model in d = 2

▸ Distribution of next-to-maximal principal minors (exc. states):



Nf = 2 Schwinger model in d = 2

▸ Physics in the 2-flavour model is more interesting,
▸ denote the fermion flavours by u and d .

▸ Isospin chemical potential generates multi-meson states.

▸ Number of u- and d-fermions must be equal:

charge Q = nu + nd = 0 ⇔ Gauss’ law,

isospin I = (nu − nd)/2 arbitrary

▸ Corresponding canonical partition functions (with nu = −nd):

Znu ,nd = ∫ Dφ e
−Sg [φ] det nuMu[φ]det ndMd[φ] .

▸ Vacuum sector is described by Z0,0.



Calculating the pion energy

▸ The flavour-triplet meson (pion) ∣ψγ5τ
aψ⟩ has quantum

numbers
Q = 0 fermion number
I = 1 isospin

and is the groundstate of the system with nu = +1,nd = −1:

Z+1,−1 = ∫ Dφ e
−Sg [φ] det +1Mu[φ]det −1Md[φ] .

▸ The free energy difference to the vacuum at T → 0 defines the
pion mass:

mπ(L) = − lim
Lt→∞

1

Lt
log

Z+1,−1(Lt)

Z0,0(Lt)
≡ µ1(L)



Calculating the pion energy



Calculating the pion energy



Calculating the 2-pion energy

▸ The flavour-triplet 2-meson (pion) state ∣ππ⟩ has quantum
numbers

Q = 0 fermion number
I = 2 isospin

and is the groundstate of the system with nu = +2,nd = −2:

Z+2,−2 = ∫ Dφ e
−Sg [φ] det +2Mu[φ]det −2Md[φ] .

▸ The free energy difference to the vacuum at T → 0 defines the
energy of the 2-pion system:

E2π(L) = − lim
Lt→∞

1

Lt
log

Z+2,−2(Lt)

Z0,0(Lt)
≡ µ1(L) + µ2(L)



Calculating the 2-pion energy



Scattering phase shifts

▸ mπ(L) and E2π(L) can be described by 3 parameters:

mπ(L) = m∞ +Ae−m∞L
/
√
L

E2π(L) = 2
√
mπ(L)2 + p2

where p is determined through the scattering phase shift

δ(p) = −
pL

2
, or rather δ(p(L)) = −

p(L)L

2
≡ δ(L) .

▸ From this one can predict the 3-pion energy

E3π(L) =
3

∑
j=1

√
mπ(L)2 + p3j ≡

3

∑
i=1

µi(L)

with p2 = p3 = −p1/2 = −2δ(L)/L.



Scattering phase shifts



Summary

▸ Canonical formulation of field theories:

▸ transfer matrices can be obtained explicitely

▸ close connection to fermion loop or worldline formulations

▸ fermionic degrees of freedom are local occupation numbers
nx = 0,1 (encoded in index sets)

Formalism and techniques are generically applicable:

▸ sometimes solves (or avoids) the fermion sign problem,
▸ improved estimators for fermionic correlation functions,
▸ integrating out (auxiliary) fields in some cases possible:

⇒ projection to baryon or zero charge sectors
⇒ the HS field in the Hubbard model


