The Schwinger model in the canonical formulation

Urs Wenger
Albert Einstein Center for Fundamental Physics University of Bern
$$
\boldsymbol{u}^{b}
$$
\[\begin{aligned} \& b
\& UNIVERSITÅT \end{aligned} \]
BERN
in collaboration with Patrick Bühlmann

Motivation for the canonical formulation

- Consider the grand-canonical partition function at finite μ :

$$
Z_{\mathrm{GC}}(\mu)=\operatorname{Tr}\left[e^{-\mathcal{H}(\mu) / T}\right]=\operatorname{Tr} \prod_{t} \mathcal{T}_{t}(\mu)
$$

- The sign problem at finite density is a manifestation of huge cancellations between different states:
- all states are present for any μ and T
- some states need to cancel out at different μ and T
- In the canonical formulation:

$$
Z_{C}\left(N_{f}\right)=\operatorname{Tr}_{N_{f}}\left[e^{-\mathcal{H} / T}\right]=\operatorname{Tr} \prod_{t} \mathcal{T}_{t}^{\left(N_{f}\right)}
$$

- dimension of Fock space tremendously reduced
- less cancellations necessary:
- e.g. $Z_{\mathrm{C}}^{\mathrm{QCD}}\left(N_{Q}\right)=0$ for $N_{Q} \neq 0 \bmod N_{c}$

Motivation for the canonical formulation

- Consider the grand-canonical partition function at finite μ :

$$
Z_{\mathrm{GC}}(\mu)=\operatorname{Tr}\left[e^{-\mathcal{H}(\mu) / T}\right]=\operatorname{Tr} \prod_{t} \mathcal{T}_{t}(\mu)
$$

- The sign problem at finite density is a manifestation of huge cancellations between different states:
- all states are present for any μ and T
- some states need to cancel out at different μ and T
- In the canonical formulation:

$$
Z_{C}\left(N_{f}\right)=\operatorname{Tr}_{N_{f}}\left[e^{-\mathcal{H} / T}\right]=\operatorname{Tr} \prod_{t} \mathcal{T}_{t}^{\left(N_{f}\right)}
$$

- dimension of Fock space tremendously reduced
- less cancellations necessary:
- e.g. $Z_{C}^{U(1)}\left(N_{Q}\right)=0$ for $N_{Q} \neq 0$

Motivation for the canonical formulation

- Consider the grand-canonical partition function at finite μ :

$$
Z_{\mathrm{GC}}(\mu)=\operatorname{Tr}\left[e^{-\mathcal{H}(\mu) / T}\right]=\operatorname{Tr} \prod_{t} \mathcal{T}_{t}(\mu)
$$

- The sign problem at finite density is a manifestation of huge cancellations between different states:
- all states are present for any μ and T
- some states need to cancel out at different μ and T
- In the canonical formulation:

$$
Z_{\mathrm{C}}\left(N_{f}\right)=\operatorname{Tr}_{N_{f}}\left[e^{-\mathcal{H} / T}\right]=\operatorname{Tr} \prod_{t} \mathcal{T}_{t}^{\left(N_{f}\right)}
$$

- dimension of Fock space tremendously reduced
- less cancellations necessary:
- e.g. "Silver Blaze" phenomenon realised automatically

Motivation for canonical formulation of QCD

Canonical transfer matrices can be obtained explicitly!

- based on the dimensional reduction of the QCD fermion determinant [Alexandru, Wenger '10; Nagata, Nakamura '10]

Motivation for canonical formulation of QCD

Canonical transfer matrices can be obtained explicitly!

- based on the dimensional reduction of the QCD fermion determinant [Alexandru, Wenger '10; Nagata, Nakamura '10]

Outline:

- Overview
- Definition of the transfer matrices in canonical formulation
- Relation to fermion loop and worldline formulations
- Hubbard model and Super Yang-Mills QM
- Schwinger model

Overview

- Identification of transfer matrices:
- Dimensional reduction in QCD [Alexandru, UW '10]
- SUSY QM and SUSY Yang-Mills QM [Baumgartner, Steinhauer, UW '12-'15]
- solution of the sign problem
- connection with fermion loop formulation
- QCD in the heavy-dense limit
- absence of the sign problem at strong coupling
- solution of the sign problem in the 3-state Potts model [Alexandru, Bergner, Schaich, UW '18]
- Hubbard model [Burri, UW '19]
- HS field can be integrated out analytically
- $N_{f}=1,2$ Schwinger model [Bühlmann, UW '19]

General construction

- For a generic Hamiltonian \mathcal{H} with $\mu \equiv\left\{\mu_{\sigma}\right\}$ one has

$$
\begin{aligned}
Z_{\mathrm{GC}}(\mu) & =\operatorname{Tr}\left[e^{-\mathcal{H}(\mu) / T}\right] \\
& =\sum_{\left\{N_{\sigma}\right\}} e^{-\sum_{\sigma} N_{\sigma} \mu_{\sigma} / T} \cdot Z_{C}\left(\left\{N_{\sigma}\right\}\right)
\end{aligned}
$$

where $Z_{C}\left(\left\{N_{\sigma}\right\}\right)=\operatorname{Tr} \Pi_{t} \mathcal{T}_{t}^{\left(\left\{N_{\sigma}\right\}\right)}$.

- Trotter decomposition and coherent state representation yields

$$
Z_{\mathrm{GC}}(\mu)=\int \mathcal{D} \phi e^{-S_{b}[\phi]} \int \mathcal{D} \psi^{\dagger} \mathcal{D} \psi e^{-S\left[\psi^{\dagger}, \psi, \phi ; \mu\right]}
$$

with Euclidean action S_{b} and fermion matrix M

$$
S\left[\psi^{\dagger}, \psi, \phi ; \mu\right]=\sum_{\sigma} \psi_{\sigma}^{\dagger} M[\phi ; \mu] \psi_{\sigma} .
$$

Fermion matrix and dimensional reduction

- The fermion matrix $M\left[\phi ; \mu_{\sigma}\right]$ has the generic structure

$$
M=\left(\begin{array}{ccccc}
B_{0} & e^{-\mu_{\sigma}} C_{0}^{\prime} & 0 & \cdots & \pm e^{\mu_{\sigma}} C_{N_{t}-1} \\
e^{\mu_{\sigma}} C_{0} & B_{1} & e^{-\mu_{\sigma}} C_{1}^{\prime} & & 0 \\
0 & e^{\mu_{\sigma}} C_{1} & B_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & & \\
\pm e^{-\mu_{\sigma}} C_{N_{t}-1}^{\prime} & 0 & & & B_{N_{t}-2} \\
e^{-\mu_{\sigma}} C_{N_{t}-2}^{\prime} \\
\mu_{\sigma} C_{N_{t}-2} & B_{N_{t}-1}
\end{array}\right)
$$

for which the determinant can be reduced to

$$
\operatorname{det} M\left[\phi ; \mu_{\sigma}\right]=\prod_{t} \operatorname{det} \tilde{B}_{t} \cdot \operatorname{det}\left(1 \mp e^{N_{t} \mu_{\sigma}} \mathcal{T}[\phi]\right)
$$

$$
\text { where } \mathcal{T}[\phi]=\mathcal{T}_{N_{t}-1} \ldots \ldots \cdot \mathcal{T}_{0} .
$$

- $M\left[\phi ; \mu_{\sigma}\right]$ is $\left(L_{s} \cdot N_{t}\right) \times\left(L_{s} \cdot N_{t}\right)$, while $\mathcal{T}[\phi]$ is $L_{s} \times L_{s}$.

Fermion matrix and canonical determinants

- Fugacity expansion

$$
\operatorname{det} M\left[\phi ; \mu_{\sigma}\right]=\sum_{N_{\sigma}} e^{-N_{\sigma} \mu_{\sigma} / T} \cdot \operatorname{det}_{N_{\sigma}} M[\phi]
$$

yields the canonical determinants

$$
\operatorname{det}_{N_{\sigma}} M[\phi]=\sum_{J} \operatorname{det} \mathcal{T}^{Y X}[\phi]=\operatorname{Tr}\left[\prod_{t} \mathcal{T}_{t}^{\left(N_{\sigma}\right)}\right] .
$$

where $\operatorname{det} \mathcal{T} \nmid Y$ is the principal minor of order N_{σ}.

- States are labeled by index sets $J \subset\left\{1, \ldots, L_{s}\right\},|J|=N_{\sigma}$
- number of states grows exponentially with L_{s} at half-filling

$$
N_{\text {states }}=\binom{L_{s}}{N_{\sigma}}=N_{\text {principal minors }}
$$

- sum can be evaluated stochastically with MC

Transfer matrices

- Use Cauchy-Binet formula

$$
\operatorname{det}(A \cdot B)^{\wedge K}=\sum_{J} \operatorname{det} A^{\wedge \chi} \cdot \operatorname{det} B^{\nmid K}
$$

to factorize into product of transfer matrices

- Transfer matrices in sector N_{σ} are hence given by

$$
\begin{gathered}
\left(\mathcal{T}_{t}^{\left(N_{\sigma}\right)}\right)_{I K}=\operatorname{det} \tilde{B}_{t} \cdot \operatorname{det}\left[\mathcal{T}_{t}\right]^{1 K} \\
\text { with } \operatorname{Tr}\left[\prod_{t} \mathcal{T}_{t}^{\left(N_{\sigma}\right)}\right]=\left(\mathcal{T}_{N_{t}-1}^{\left(N_{\sigma}\right)}\right)_{I J} \cdot\left(\mathcal{T}_{N_{t}-2}^{\left(N_{\sigma}\right)}\right)_{J K} \cdot \ldots \cdot\left(\mathcal{T}_{0}^{\left(N_{\sigma}\right)}\right)_{L I}
\end{gathered}
$$

- Finally, we have

$$
Z_{C}\left(\left\{N_{\sigma}\right\}\right)=\int \mathcal{D} \phi e^{-S_{b}[\phi]} \prod_{t} \operatorname{det} \tilde{B}_{t} \cdot \sum_{\left\{J_{t}^{\sigma}\right\}} \prod_{t}\left(\prod_{\sigma} \operatorname{det}\left[\mathcal{T}_{t}^{\sigma}\right]^{Y_{t-1}^{\sigma} X_{t}^{\sigma}}\right)
$$

where $\left|J_{t}^{\sigma}\right|=N_{\sigma}$ and $J_{N_{t}}^{\sigma}=J_{0}^{\sigma}$.

Example: Hubbard model

- Consider the Hamiltonian for the Hubbard model

$$
\mathcal{H}(\mu)=-\sum_{\langle x, y\rangle, \sigma} t_{\sigma} \hat{c}_{x, \sigma}^{\dagger} \hat{c}_{y, \sigma}+\sum_{x, \sigma} \mu_{\sigma} N_{x, \sigma}+U \sum_{x} N_{x, \uparrow} N_{x, \downarrow}
$$

with particle number $N_{x, \sigma}=\hat{c}_{x, \sigma}^{\dagger} \hat{c}_{x, \sigma}$.

- After Trotter decomposition and Hubbard-Stratonovich transformation we have

$$
Z_{\mathrm{GC}}(\mu)=\int \mathcal{D} \psi^{\dagger} \mathcal{D} \psi \mathcal{D} \phi \rho[\phi] e^{-\sum_{\sigma} S\left[\psi_{\sigma}^{\dagger}, \psi_{\sigma}, \phi ; \mu_{\sigma}\right]}
$$

with $S\left[\psi_{\sigma}^{\dagger}, \psi_{\sigma}, \phi ; \mu_{\sigma}\right]=\psi_{\sigma}^{\dagger} M\left[\phi ; \mu_{\sigma}\right] \psi_{\sigma}$, and hence

$$
=\int \mathcal{D} \phi \rho[\phi] \prod_{\sigma} \operatorname{det} M\left[\phi ; \mu_{\sigma}\right] .
$$

Example: Hubbard model

- The fermion matrix has the structure

$$
M\left[\phi ; \mu_{\sigma}\right]=\left(\begin{array}{cclc}
B & 0 & \ldots & \pm e^{\mu_{\sigma}} C\left(\phi_{N_{t}-1}\right) \\
-e^{\mu_{\sigma}} C\left(\phi_{0}\right) & B & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & -e^{\mu_{\sigma}} C\left(\phi_{N_{t}-2}\right) & B
\end{array}\right)
$$

for which the determinant can be reduced to

$$
\operatorname{det} M\left[\phi ; \mu_{\sigma}\right]=\operatorname{det} B^{N_{t}} \cdot \operatorname{det}\left(1 \mp e^{N_{t} \mu_{\sigma}} \mathcal{T}[\phi]\right)
$$

where $\mathcal{T}[\phi]=B^{-1} C\left(\phi_{N_{t}-1}\right) \cdot \ldots \cdot B^{-1} C\left(\phi_{0}\right)$.

- Fugacity expansion yields the canonical determinants

$$
\operatorname{det} M_{N_{\sigma}}[\phi]=\sum_{J} \operatorname{det} \mathcal{T}^{\not Y Y}[\phi]=\operatorname{Tr}\left[\prod_{t} \mathcal{T}_{t}^{\left(N_{\sigma}\right)}\right] .
$$

where $\operatorname{det} \mathcal{T}^{X X}$ is the principal minor of order N_{σ}.

Example: Hubbard model

- Transfer matrices are hence given by

$$
\begin{aligned}
\left(\mathcal{T}_{t}\right)_{\mathbb{K}} & =\operatorname{det} B \cdot \operatorname{det}\left[B^{-1} \cdot C\left(\phi_{t}\right)\right]^{\mathcal{K}} \\
& =\operatorname{det} B \cdot \operatorname{det}\left(B^{-1}\right)^{\wedge \mathcal{X}} \cdot \operatorname{det} C\left(\phi_{t}\right)^{\not K K}
\end{aligned}
$$

- Moreover, using the complementary cofactor we get

$$
\operatorname{det} B \cdot \operatorname{det}\left(B^{-1}\right)^{Y \Lambda}=(-1)^{p(I, J)} \operatorname{det} B^{I J}
$$

where $p(I, J)=\sum_{i}\left(I_{i}+J_{i}\right)$ and HS field can be integrated out,

$$
\operatorname{det} C\left(\phi_{t}\right)^{\nless K}=\delta_{J K} \prod_{\Varangle \notin J} \phi_{x, t} \Longrightarrow \prod_{x} w_{x, t} \equiv W\left(\left\{J_{t}^{\sigma}\right\}\right) .
$$

- Finally, only sum over discrete index sets is left:

$$
Z_{C}\left(\left\{N_{\sigma}\right\}\right)=\sum_{\left\{J_{t}^{\sigma}\right\}} \prod_{t}\left(\prod_{\sigma} \operatorname{det} B^{J_{t-1}^{\sigma} J_{t}^{\sigma}}\right) W\left(\left\{J_{t}^{\sigma}\right\}\right), \quad\left|J_{t}^{\sigma}\right|=N_{\sigma}
$$

Example: Hubbard model

$$
Z_{C}\left(\left\{N_{\sigma}\right\}\right)=\sum_{\left\{J_{t}^{\sigma}\right\}} \prod_{t}\left(\prod_{\sigma} \operatorname{det} B^{J_{t-1}^{\sigma} J_{t}^{\sigma}}\right) W\left(\left\{J_{t}^{\sigma}\right\}\right)
$$

index sets J_{t} :

$\{3,6\}$
$\{4,5\}$
$\{4,5\}$
$\{2,7\}$
$\{2,7\}$
$\{3,7\}$

Example: Hubbard model

- In $d=1$ dimension the 'fermion bags' $\operatorname{det} B^{I J}$ can be calculated analytically:

and one can prove that

$$
\begin{aligned}
& \quad \operatorname{det} B^{I J} \geq 0 \text { for open b.c. } \\
& \Rightarrow \text { there is no sign problem }
\end{aligned}
$$

- For periodic b.c. there is no sign problem either, because

$$
Z_{C}^{\mathrm{pbc}}\left(L_{s} \rightarrow \infty\right)=Z_{C}^{\mathrm{obc}}\left(L_{s} \rightarrow \infty\right)
$$

Example: Hubbard model

- Since our formulation is factorized in time, we have

$$
E_{0}=\lim _{L_{t} \rightarrow \infty} \frac{Z_{C}\left(L_{t}\right)}{Z_{C}\left(L_{t+1}\right)}=\left\langle\prod_{\sigma}\left(\frac{\operatorname{det} B^{J_{t-1}^{\sigma} J_{t+1}^{\sigma}}}{\operatorname{det} B^{J_{t-1}^{\sigma} J_{t}^{\sigma}} \operatorname{det} B_{t}^{J_{t+1}^{\sigma} J_{t+1}^{\sigma}}}\right) \frac{1}{W\left(\left\{J_{t}^{\sigma}\right\}\right)}\right\rangle_{Z_{C}\left(L_{t+1}\right)}
$$

Grand canonical gauge theories

- Consider gauge theory, e.g. Schwinger model or QCD:

$$
Z_{\mathrm{GC}}(\mu)=\int \mathcal{D} \cup \mathcal{D} \bar{\psi} \mathcal{D} \psi e^{-S_{g}[U]-S_{f}[\bar{\psi}, \psi, U ; \mu]}
$$

where

$$
\begin{aligned}
S_{g}[U] & =\beta \sum_{P}\left[1-\frac{1}{2}\left(U_{P}+U_{P}^{\dagger}\right)\right], \\
S_{f}[\bar{\psi}, \psi, U ; \mu] & =\bar{\psi} M[U ; \mu] \psi .
\end{aligned}
$$

- for QCD: $d=4, U \in S U\left(N_{c}\right)$
- for the Schwinger model: $\boldsymbol{d}=2, U \in U(1)$
- Integrating out the Grassmann fields for N_{f} flavours yields

$$
Z_{\mathrm{GC}}(\mu)=\int \mathcal{D} U e^{-S_{g}[U]}(\operatorname{det} M[U ; \mu])^{N_{f}}
$$

Dimensional reduction of gauge theories

- Consider the Wilson fermion matrix for a single quark with chemical potential μ :

$$
M_{ \pm}(\mu)=\left(\begin{array}{ccccc}
B_{0} & P_{+} A_{0}^{+} & & & \pm P_{-} A_{L_{t}-1}^{-} \\
P_{-} A_{0}^{-} & B_{1} & P_{+} A_{1}^{+} & & \\
& P_{-} A_{1}^{-} & B_{2} & \ddots & \\
& & \ddots & \ddots & \\
& & & & P_{+} A_{L_{t}-2}^{+} \\
\pm P_{+} A_{L_{t}-1}^{+} & & & P_{-} & B_{L_{t}-1}
\end{array}\right)
$$

- B_{t} are (spatial) Wilson Dirac operators on time-slice t,
- Dirac projectors $P_{ \pm}=\frac{1}{2}\left(\mathbb{I} \mp \Gamma_{4}\right)$,
- temporal hoppings are

$$
A_{t}^{+}=e^{+\mu} \cdot \mathbb{I}_{d \times d} \otimes \mathcal{U}_{t}=\left(A_{t}^{-}\right)^{-1}
$$

- all blocks are $\left(d \cdot N_{c} \cdot L_{s}^{3} \times d \cdot N_{c} \cdot L_{s}^{3}\right)$-matrices

Dimensional reduction of gauge theories

- Reduced Wilson fermion determinant is given by

$$
\operatorname{det} M_{p, a}(\mu)=\prod_{t} \operatorname{det} Q_{t}^{+} \cdot \operatorname{det}\left[\mathbb{I} \pm e^{+\mu L_{t}} \mathcal{T}\right]
$$

where \mathcal{T} is a product of transfer matrices given by

$$
\mathcal{T}=\prod_{t} \mathcal{U}_{t-1}^{+} \cdot\left(Q_{t}^{-}\right)^{-1} \cdot Q_{t}^{+} \cdot \mathcal{U}_{t}^{-}
$$

with

$$
Q_{t}^{ \pm}=B_{t} P_{ \pm}+P_{\mp}, \quad \mathcal{U}_{t}^{ \pm}=\mathcal{U}_{t} P_{ \pm}+P_{\mp}
$$

- Fugacity expansion yields with $N_{Q}^{\max }=d \cdot N_{c} \cdot L_{s}^{3}$

$$
\operatorname{det} M_{a}(\mu)=\sum_{N_{Q}=-N_{Q}^{\max }}^{N_{Q}^{\max }} e^{\mu N_{Q} / T} \cdot \operatorname{det} M_{N_{Q}}
$$

Canonical formulation of gauge theories

Canonical transfer matrices of gauge theories

$$
\operatorname{det} M_{N_{Q}}=\prod_{t} \operatorname{det} Q_{t}^{+} \cdot \sum_{A} \operatorname{det} \mathcal{T}^{\chi A}=\operatorname{Tr} \prod_{t} \mathcal{T}_{t}^{\left(N_{Q}\right)}
$$

- sum is over all index sets $A \in\left\{1,2, \ldots, 2 N_{Q}^{\max }\right\}$ of size N_{Q},
- i.e. the trace over the minor matrix of rank N_{Q} of \mathcal{T}
- Provides a complete temporal factorization of the fermion determinant.

Relation between quark and baryon number in QCD

- Consider $\mathbb{Z}\left(N_{c}\right)$-transformation by $z_{k}=e^{2 \pi i \cdot k / N_{c}} \in \mathbb{Z}\left(N_{c}\right)$:

$$
U_{4}(x) \rightarrow U_{4}(x)^{\prime}=\left(1+\delta_{x_{4}, t} \cdot\left(z_{k}-1\right)\right) \cdot U_{4}(x)
$$

- Hence, $\mathcal{U}_{x_{4}}$ transforms as $\mathcal{U}_{x_{4}} \rightarrow \mathcal{U}_{x_{4}}^{\prime}=z_{k} \cdot \mathcal{U}_{x_{4}}$, while for all others $\mathcal{U}_{t \neq x_{4}}^{\prime}=\mathcal{U}_{t \neq x_{4}}$.
- As a consequence we have

$$
\begin{aligned}
\operatorname{det} M_{N_{Q}} \rightarrow \operatorname{det} M_{N_{Q}}^{\prime} & =\prod_{t} \operatorname{det} Q_{t}^{+} \cdot \sum_{A} \operatorname{det}\left(z_{k} \cdot \mathcal{T}\right)^{\nmid \lambda} \\
& =z_{k}^{-N_{Q}} \cdot \operatorname{det} M_{N_{Q}}
\end{aligned}
$$

and summing over z_{k} therefore yields

$$
\operatorname{det} M_{N_{Q}}=0 \quad \text { for } N_{Q} \neq 0 \bmod N_{c}
$$

- reduces cancellations by factor of N_{c}

Gauss' law in the $N_{f}=1$ Schwinger model

- Consider $U(1)$-transformation by $e^{i \alpha} \in U(1)$:

$$
e^{i \phi_{2}(x)} \rightarrow e^{i \phi_{2}(x) \prime}=\left(1+\delta_{x_{2}, t} \cdot\left(e^{i \alpha}-1\right)\right) \cdot e^{i \phi_{2}(x)}
$$

- Hence, $\mathcal{U}_{x_{2}}$ transforms as $\mathcal{U}_{x_{2}} \rightarrow \mathcal{U}_{x_{2}}^{\prime}=e^{i \alpha} \cdot \mathcal{U}_{x_{2}}$, while for all others $\mathcal{U}_{t \neq x_{2}}^{\prime}=\mathcal{U}_{t \neq x_{2}}$.
- As a consequence we have

$$
\begin{aligned}
\operatorname{det} M_{N_{Q}} \rightarrow \operatorname{det} M_{N_{Q}}^{\prime} & =\prod_{t} \operatorname{det} Q_{t}^{+} \cdot \sum_{A} \operatorname{det}\left(e^{i \alpha} \cdot \mathcal{T}\right)^{\lambda \lambda \lambda} \\
& =e^{-i \alpha N_{Q}} \cdot \operatorname{det} M_{N_{Q}}
\end{aligned}
$$

and integrating over α therefore yields

$$
\operatorname{det} M_{N_{Q}}=0 \quad \text { for } N_{Q} \neq 0
$$

- only zero charge sector is allowed!

$N_{f}=1$ Schwinger model in $d=2$

- Distribution of principal minors:

$N_{f}=1$ Schwinger model in $d=2$

- Distribution of principal minors:

$N_{f}=1$ Schwinger model in $d=2$

- Distribution of maximal principal minors:

$N_{f}=1$ Schwinger model in $d=2$

- Distribution of maximal principal minors (ground state):

$N_{f}=1$ Schwinger model in $d=2$

- Distribution of next-to-maximal principal minors (exc. states):

$N_{f}=2$ Schwinger model in $d=2$

- Physics in the 2-flavour model is more interesting,
- denote the fermion flavours by u and d.
- Isospin chemical potential generates multi-meson states.
- Number of u - and d-fermions must be equal:

$$
\begin{aligned}
& \text { charge } Q=n_{u}+n_{d}=0 \quad \Leftrightarrow \quad \text { Gauss' law, } \\
& \text { isospin } I=\left(n_{u}-n_{d}\right) / 2 \quad \text { arbitrary }
\end{aligned}
$$

- Corresponding canonical partition functions (with $n_{u}=-n_{d}$):

$$
Z_{n_{u}, n_{d}}=\int \mathcal{D} \phi e^{-S_{g}[\phi]} \operatorname{det}_{n_{u}} M_{u}[\phi] \operatorname{det}_{n_{d}} M_{d}[\phi]
$$

- Vacuum sector is described by $Z_{0,0}$.

Calculating the pion energy

- The flavour-triplet meson (pion) $\left|\bar{\psi} \gamma_{5} \tau^{a} \psi\right\rangle$ has quantum numbers

$$
\begin{aligned}
Q=0 & \text { fermion number } \\
I=1 & \text { isospin }
\end{aligned}
$$

and is the groundstate of the system with $n_{u}=+1, n_{d}=-1$:

$$
Z_{+1,-1}=\int \mathcal{D} \phi e^{-S_{g}[\phi]} \operatorname{det}_{+1} M_{u}[\phi] \operatorname{det}_{-1} M_{d}[\phi] .
$$

- The free energy difference to the vacuum at $T \rightarrow 0$ defines the pion mass:

$$
m_{\pi}(L)=-\lim _{L_{t} \rightarrow \infty} \frac{1}{L_{t}} \log \frac{Z_{+1,-1}\left(L_{t}\right)}{Z_{0,0}\left(L_{t}\right)} \equiv \mu_{1}(L)
$$

Calculating the pion energy

Calculating the pion energy

Calculating the 2-pion energy

- The flavour-triplet 2-meson (pion) state $|\pi \pi\rangle$ has quantum numbers

$$
\begin{array}{ll}
Q=0 & \text { fermion number } \\
I=2 & \text { isospin }
\end{array}
$$

and is the groundstate of the system with $n_{u}=+2, n_{d}=-2$:

$$
Z_{+2,-2}=\int \mathcal{D} \phi e^{-S_{g}[\phi]} \operatorname{det}_{+2} M_{u}[\phi] \operatorname{det}_{-2} M_{d}[\phi] .
$$

- The free energy difference to the vacuum at $T \rightarrow 0$ defines the energy of the 2-pion system:

$$
E_{2 \pi}(L)=-\lim _{L_{t} \rightarrow \infty} \frac{1}{L_{t}} \log \frac{Z_{+2,-2}\left(L_{t}\right)}{Z_{0,0}\left(L_{t}\right)} \equiv \mu_{1}(L)+\mu_{2}(L)
$$

Calculating the 2-pion energy

Scattering phase shifts

- $m_{\pi}(L)$ and $E_{2 \pi}(L)$ can be described by 3 parameters:

$$
\begin{aligned}
& m_{\pi}(L)=m_{\infty}+A e^{-m_{\infty} L} / \sqrt{L} \\
& E_{2 \pi}(L)=2 \sqrt{m_{\pi}(L)^{2}+p^{2}}
\end{aligned}
$$

where p is determined through the scattering phase shift

$$
\delta(p)=-\frac{p L}{2}, \quad \text { or rather } \quad \delta(p(L))=-\frac{p(L) L}{2} \equiv \delta(L) .
$$

- From this one can predict the 3-pion energy

$$
E_{3 \pi}(L)=\sum_{j=1}^{3} \sqrt{m_{\pi}(L)^{2}+p_{j}^{3}} \equiv \sum_{i=1}^{3} \mu_{i}(L)
$$

with $p_{2}=p_{3}=-p_{1} / 2=-2 \delta(L) / L$.

Scattering phase shifts

Summary

- Canonical formulation of field theories:
- transfer matrices can be obtained explicitely
- close connection to fermion loop or worldline formulations
- fermionic degrees of freedom are local occupation numbers $n_{x}=0,1$ (encoded in index sets)

Formalism and techniques are generically applicable:

- sometimes solves (or avoids) the fermion sign problem,
- improved estimators for fermionic correlation functions,
- integrating out (auxiliary) fields in some cases possible:
\Rightarrow projection to baryon or zero charge sectors
\Rightarrow the HS field in the Hubbard model

