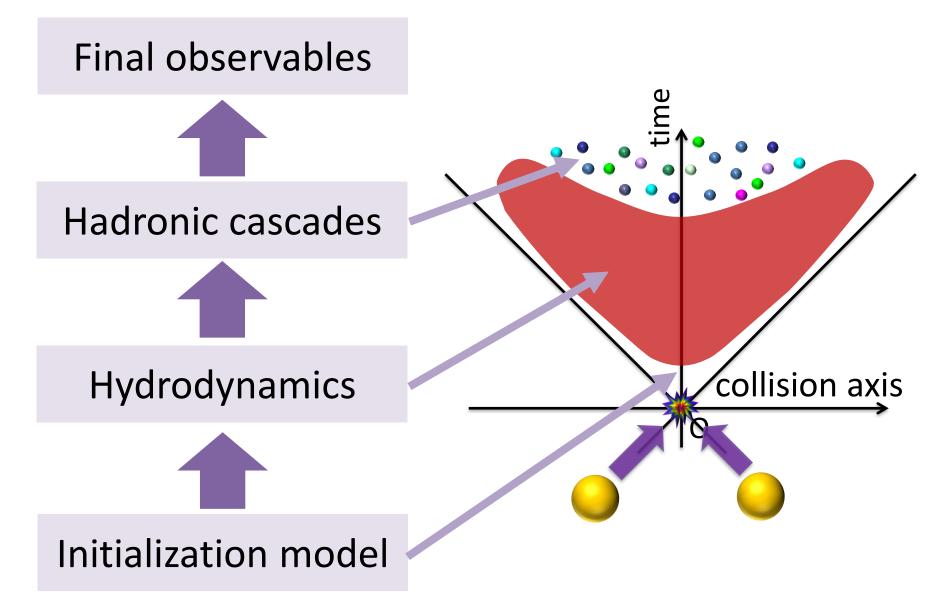
Hydrodynamic fluctuations and fluctuation theorem in heavy-ion collisions

Koichi Murase

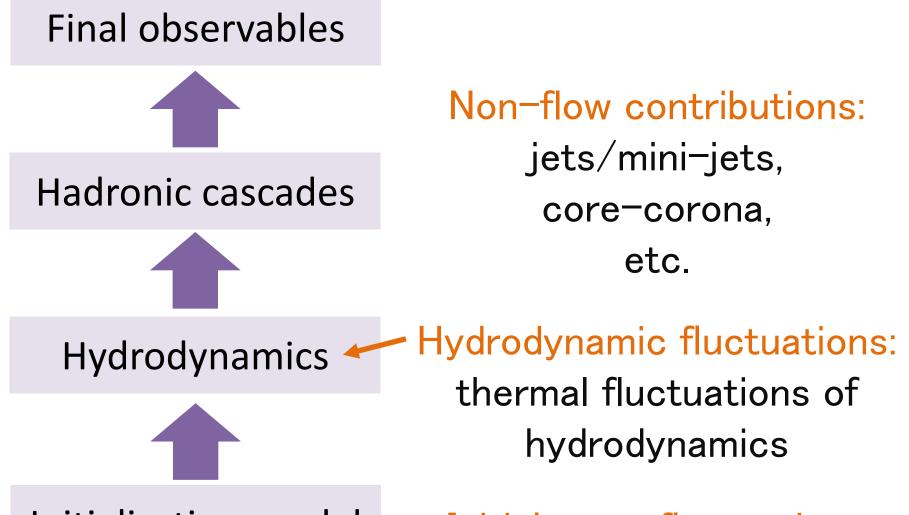
Sophia University

XQCD 2019, Jun 25, 2019, Tokyo

Dynamical models for heavy-ion collisions



Fluctuations/Correlations



Initialization model — Initial state fluctuations

Fluctuating hydrodynamics

= viscous hydrodynamics with thermal fluctuations

Stochastic partial differential equations (SPDE)

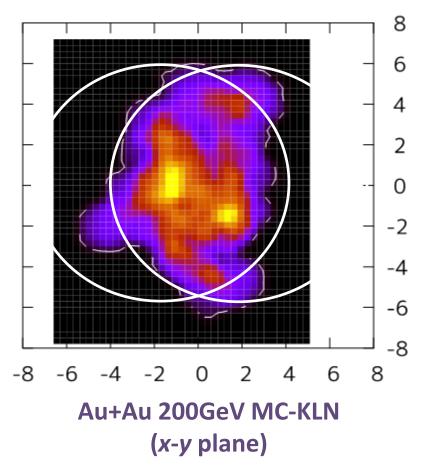
Conservation law $\partial_{\mu}T^{\mu\nu} = 0.$ **Constitutive eqs.** hydrodynamic fluctuations $\pi^{\mu\nu} + \tau_{\pi} \Delta^{\mu\nu}{}_{\alpha\beta} \mathrm{D}\pi^{\alpha\beta} = 2\eta \partial^{\langle\mu} u^{\rangle\nu} + \cdots + \xi^{\mu\nu}_{\pi},$ $[1 + \tau_{\Pi} \mathrm{D}]\Pi = -\zeta \partial_{\mu} u^{\mu} + \cdots + \xi_{\Pi}.$ **Fluctuation-dissipation relation (FDR)** $\langle \xi^{\mu\nu}(x)\xi^{\alpha\beta}(x')\rangle = 4T\eta\Delta^{\mu\nu\alpha\beta}\delta^{(4)}(x-x'),$ $\langle \xi(x)\xi(x')\rangle = 2T\zeta\delta^{(4)}(x-x'),$

FDR MODIFICATION

based on K. Murase, arXiv:1904.11217

Inhomogeneous and non-static matter

Matter created in nuclear collisions is <u>not</u> *static* and *homogeneous*



Usual FDR relies on the linear-response of **global equilibrium** to small perturbations How is FDR modified in inhomogeneous and

non-static matter?

Constitutive equation (CE)

Constitutive eq. in linear response regime

• Integral form: $\Gamma = \Pi, \pi^{\mu\nu}, \nu_i^{\mu}$

$$\Gamma(x) = \int d^4x' \frac{G(x-x')}{\underset{\textit{function}}{\text{memory}}} \frac{\kappa F(x')}{\overset{\text{1st order}}{\underset{\textit{term}}{\text{term}}}}$$

• Differential form:

$$\begin{array}{l} L(\mathrm{D},\nabla^{\mu})\Gamma(x)=M(\nabla^{\mu})\kappa F(x)\\ \hline \mathbf{\Gamma}^{\mathsf{st}} \text{ order}\\ \mathsf{F}^{\mathsf{st}} \text{ (higher order terms)}\\ \texttt{finite-order in derivatives} \end{array} \left(\begin{array}{c} \mathsf{e.g. \ Bulk \ pressure}\\ L=1+\tau_{\Pi}\mathrm{D},\\ M=1\\ \tau_{\Pi}D\Pi+\Pi=-\zeta\theta \end{array} \right)$$

Integral form FDR

$$\Gamma(x) = \int d^4x' G(x, x') \kappa(x') F(x') + \delta \Gamma(x).$$

<u>Typical form of FDR for integral form noise</u> in *inhomogeneous and non-static backgrounds*

$$\langle \delta \Gamma(x) \delta \Gamma(x')^{\mathrm{T}} \rangle \Theta(x^{0} - x'^{0}) = \underbrace{G(x, x')}_{\neq G(x-x')} \kappa(x') T(x'),$$

$$\text{No translational symmetry}$$

See, e.g., D. N. Zubarev, Nonequilibrium Statistical Thermodynamics (Plenum, New York, 1974), A. Hosoya, M.-a. Sakagami, and M. Takao, Annals Phys. 154, 229 (1984).

Equivalent to

 $\langle \delta \Gamma(x) \delta \Gamma(x')^{\mathrm{T}} \rangle = \underline{G(x, x')} \kappa(x') T(x') + T(x) \kappa(x) \underline{G(x', x)}^{\mathrm{T}}$

Differential form FDR

Linear-response differential CE with noise $L(D, \nabla^{\mu}; x)\Gamma(x) = M(\nabla^{\mu}; x)\kappa F(x) + \xi(x).$

<u>Relations to $(G, \delta\Gamma)$ in integral form CE</u>

$$L(\mathbf{D}, \nabla^{\mu}; x)G(x, x') = M(\nabla^{\mu}; x)\delta^{(4)}(x - x'),$$

$$\xi(x) = L(\mathbf{D}, \nabla^{\mu}; x)\delta\Gamma(x).$$

+ Integral form FDR

 \rightarrow Differential form FDR

$$\begin{split} \langle \xi(x)\xi(x')^{\mathrm{T}} \rangle &= M(\nabla^{\mu};x)\delta^{(4)}(x-x')\kappa(x')T(x')L(\overleftarrow{\mathrm{D}}',\overleftarrow{\nabla}'^{\mu};x')^{\mathrm{T}} \\ &+ L(\mathrm{D},\nabla^{\mu};x)T(x)\kappa(x)\delta^{(4)}(x-x')M(\overleftarrow{\nabla}'^{\mu};x')^{\mathrm{T}}, \end{split}$$

Simplified IS case

Differential form FDR for simplified Israel-Stewart theory

$$\langle \xi_{\Pi}(x)\xi_{\Pi}(x')\rangle = \left(2 + \tau_{\Pi} D \ln \frac{T\zeta}{\tau_{\Pi}} - \tau_{\Pi}\theta\right) T\zeta\delta^{(4)}(x - x'),$$

$$\langle \xi_{\pi}^{\mu\nu}(x)\xi_{\pi}^{\alpha\beta}(x')\rangle = 2\left[\left(2 + \tau_{\pi} D \ln \frac{T\eta}{\tau_{\pi}} - \tau_{\pi}\theta\right)\Delta^{\mu\nu\alpha\beta} + \tau_{\pi} \mathcal{D}\Delta^{\mu\nu\alpha\beta}\right] T\eta\delta^{(4)}(x - x'),$$

$$\langle \xi_{i}^{\mu}(x)\xi_{j}^{\alpha}(x')\rangle = -2T\kappa_{ij}\Delta^{\mu\alpha}\delta^{(4)}(x - x')$$

$$- \Delta^{\mu\alpha}[K_{ij}^{A}(x)\mathcal{D} - K_{ij}^{A}(x')\mathcal{D}']\delta^{(4)}(x - x')$$

$$+ \sum_{k=1}^{n} \left\{-\Delta^{\mu\alpha}\left[\tau_{ik}DT\kappa_{kj} - (D\tau_{ik})T\kappa_{kj} - \tau_{ik}\theta T\kappa_{kj}\right]^{S} - K_{ij}^{S}\mathcal{D}\Delta^{\mu\alpha}\right\}\delta^{(4)}(x - x'),$$

where $K_{ij}^{S/A}(x) = \sum_{k=1}^{n} T(x) (\tau_{ik}(x) \kappa_{kj}(x) \pm \tau_{jk}(x) \kappa_{ki}(x))/2$, and $[\circ_{ij}]^{S} = (\circ_{ij} + \circ_{ji})/2$.

$$\mathcal{D}\Delta^{\mu\nu\alpha\beta} = \Delta^{\mu\nu}{}_{\kappa\lambda}\Delta^{\alpha\beta}{}_{\gamma\delta}\mathrm{D}\Delta^{\kappa\lambda\gamma\delta},$$
$$\mathcal{D}\Delta^{\mu\alpha} = \Delta^{\mu}{}_{\kappa}\Delta^{\alpha}{}_{\gamma}\mathrm{D}\Delta^{\kappa\gamma}.$$

complicated expression due to the tensor structure...

Essential structure

$$\langle \xi(x)\xi(x')\rangle = \left(2 + \underline{\tau_R} \operatorname{D}\ln\frac{T\kappa}{\tau_R} - \underline{\tau_R}\theta\right) T\kappa\delta^{(4)}(x-x').$$

new modification terms ∝ relaxation time

2019/6/25

FLUCTUATION THEOREM IN BJORKEN EXPANSION

based on T. Hirano, R. Kurita, KM, Nucl. Phys. A984 (2019) 44-67

Fluctuation theorem (FT)

D. J. Evans, E. G. D. Cohen, G. P. Morriss, Phys. Rev. Lett. 71, 2401–2404 (1993)

Relations for probability density Pr(δS) of entropy production δS

known in non-equilibrium statistical mechanics:

$$\ln \frac{\Pr(\delta S = \alpha)}{\Pr^{\dagger}(\delta S^{\dagger} = -\alpha)} = \alpha$$

Note: definitions of δS , δS^{\dagger} , $Pr(\delta S)$, $Pr^{\dagger}(\delta S^{\dagger})$ depends on systems and processes. \rightarrow many variations of FT

Fluctuation theorem (FT)

(Example) Steady-state FT (SSFT)



$$\ln \frac{\Pr(\bar{\sigma} = \alpha)}{\Pr(\bar{\sigma} = -\alpha)} = \alpha t + O(\tau_R/t)$$

- $\sigma = \delta S/t$: entropy production rate per unit time
- τ_R : relaxation time scale of the system

FT in high-energy nuclear collisions

FT: generalization of FDR near the equilibrium

- \rightarrow Relations to FDR in fluctuating hydrodynamics?
- \rightarrow Entropy distribution through multiplicity?

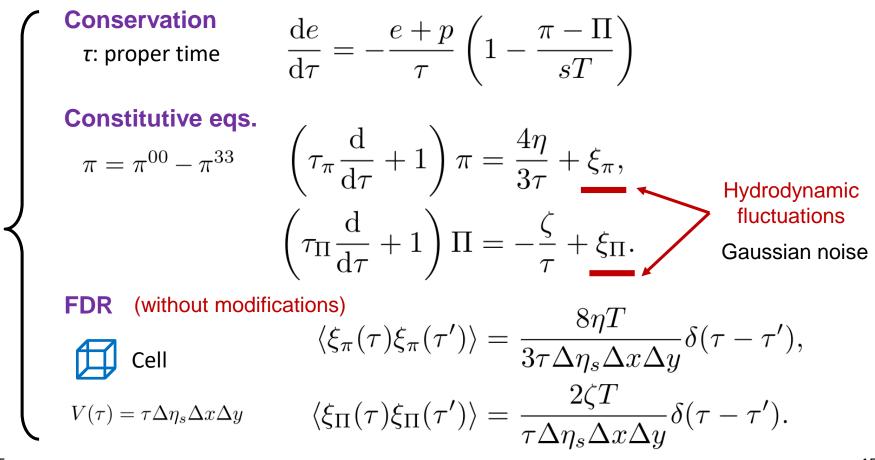
Qualitative understanding under idealized assumptions

Simplification

- **1 Bjorken flow**: (0+1)-dim evolution
- 2 Linear fluctuations: no non-linear fluctuations
- 3 Navier-Stokes limit: negligible τ_R

Hydrodynamic equations

(0+1)-dim Bjorken flow (assumption ①) 2nd order fluctuating hydro



T. Hirano, R. Kurita, KM, Nucl. Phys. A984 (2019) 44-67

2019/6/25

Entropy production rate

Step 1. Def. Entropy production in a cell

$$\bar{\sigma} := \frac{s(\tau)V(\tau) - s(\tau_i)V(\tau_i)}{\tau - \tau_i}.$$

s: Equilibrium entropy $V(\tau)$: volume of the cell τ_i : initial time

Step 2. Result of time evolution

$$\bar{\sigma} = \frac{1}{\tau - \tau_{\rm i}} \int_{\tau_{\rm i}}^{\tau} \mathrm{d}\tau' \frac{\pi(\tau') - \Pi(\tau')}{T(\tau')} \Delta \eta_s \Delta x \Delta y.$$

where
$$\pi(\tau) = \int_{\tau_{i}}^{\tau} d\tau' G_{\pi}(\tau, \tau') \frac{4\eta}{3\tau'} + \delta\pi(\tau),$$
 $\delta\pi(\tau) = \int_{\tau_{i}}^{\tau} d\tau' G_{\pi}(\tau, \tau') \xi_{\pi}(\tau'),$
 $\Pi(\tau) = -\int_{\tau_{i}}^{\tau} d\tau' G_{\Pi}(\tau, \tau') \frac{\zeta}{\tau'} + \delta\Pi(\tau),$ $\delta\Pi(\tau) = \int_{\tau_{i}}^{\tau} d\tau' G_{\Pi}(\tau, \tau') \xi_{\Pi}(\tau').$
 $G_{\pi/\Pi}(\tau_{2}, \tau_{1}) := \exp\left(-\int_{\tau_{1}}^{\tau_{2}} \frac{d\tau}{\tau_{\pi/\Pi}(\tau)}\right) \frac{1}{\tau_{\pi/\Pi}(\tau_{1})}$

T. Hirano, R. Kurita, KM, Nucl. Phys. A984 (2019) 44-67

Entropy production rate

Step 3. Distribution of entropy production

Linear fluctuations (assumption $(2) \rightarrow$ Gaussian distributions Navier-Stokes limit (assumption $(3) \rightarrow$ Simplified expr.

average
$$\langle \bar{\sigma} \rangle = \frac{\Delta \eta_s \Delta x \Delta y}{\tau - \tau_i} \int_{\tau_i}^{\tau} \frac{\mathrm{d}\tau'}{T_0(\tau')} \left(\frac{4\eta}{3\tau'} + \frac{\zeta}{\tau'} \right),$$

variance $a^2 = \langle \bar{\sigma}^2 \rangle - \langle \bar{\sigma} \rangle^2$
 $= \frac{2\Delta \eta_s \Delta x \Delta y}{(\tau - \tau_i)^2} \int_{\tau_i}^{\tau} \frac{\mathrm{d}\tau'}{T_0(\tau')} \left(\frac{4\eta}{3\tau'} + \frac{\zeta}{\tau'} \right),$
 $\Pr(\bar{\sigma} = \alpha)$

$$\Rightarrow \quad \frac{2\langle \sigma \rangle}{a^2} = \tau - \tau_i \qquad \Leftrightarrow \quad \ln \frac{\Pr(\bar{\sigma} = \alpha)}{\Pr(\bar{\sigma} = -\alpha)} = \alpha t + O(\tau_R/t)$$

✓ Expression equivalent to SSFT in expanding system

2019/6/25

T. Hirano, R. Kurita, KM, Nucl. Phys. A984 (2019) 44-67

Effects of non-linearity/relaxation

Simplification

- **Bjorken flow**
- Linear fluctuati
- avier-Stokes limit $(\mathbf{3})$

Effects of non-linear fluctuations and relaxation time by 0+1 dim numerical simulations

3.5 default 3 models of relaxation time conformal 3 Relaxation time τ_R [fm] constant $\tau_{\pi} = \tau_{\Pi} = \frac{3\eta}{2p}$ 2.5 1. default 2 1.5 2. conformal $\tau_{\pi} = \tau_{\Pi} = 3/2\pi T$ 1 0.5 3. constant $\tau_{\pi} = \tau_{\Pi} = 0.3 \text{fm}$ 0.15 0.2 0.14 0.19 0.21 0.16 0.170.18 Temperature T [GeV]

2019/6/25

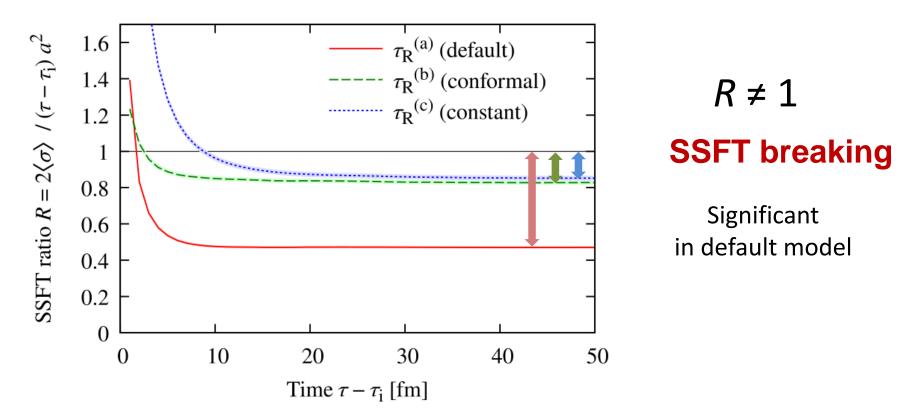
T. Hirano, R. Kurita, KM, Nucl. Phys. A984 (2019) 44-67

0.22

SSFT Ratio R

SSFT
$$\frac{2\langle \bar{\sigma} \rangle}{a^2} = \tau - \tau_i \rightarrow \text{Ratio} \quad R = \frac{2\langle \bar{\sigma} \rangle}{a^2 \cdot (\tau - \tau_i)}$$

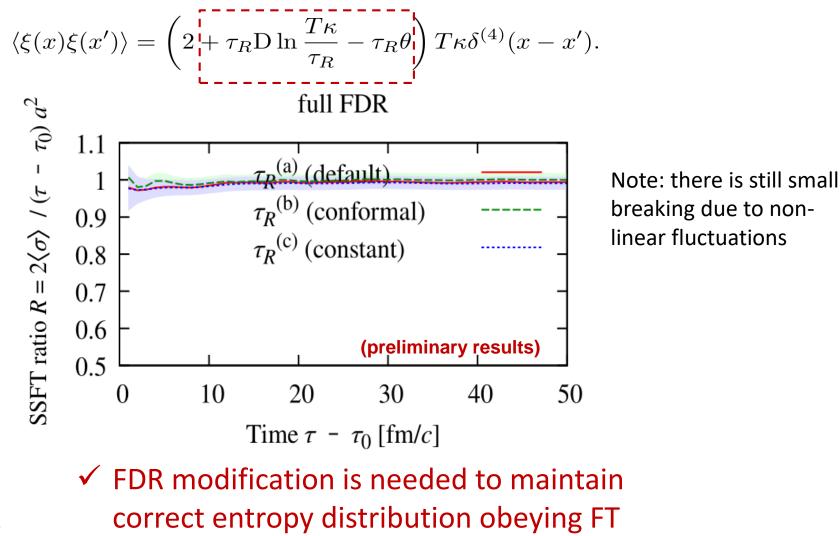
Time evolution of R



T. Hirano, R. Kurita, KM, Nucl. Phys. A984 (2019) 44-67

With FDR modifications

SSFT breaking by relaxation times was actually artifact. With the FDR modification, SSFT recovers:



20

Multiplicity fluctuations

In high-energy nuclear collisions?

Upper bound in entropy fluctuations

$$\begin{split} \frac{\Delta S(\tau)}{\langle S(\tau) \rangle} &= \frac{a(\tau - \tau_i)}{S_i + \langle \bar{\sigma} \rangle (\tau - \tau_i)} & \begin{array}{l} \text{S: entropy} \\ \text{S: initial entropy} \end{array} & \begin{array}{l} \text{Au+Au } \sqrt{s_{\text{NN}}} = 200 \text{ GeV} \\ \text{STAR Collaboration (RHIC)} \end{array} \\ &= \frac{\sqrt{2\langle \bar{\sigma} \rangle (\tau - \tau_i)}}{S_i + \langle \bar{\sigma} \rangle (\tau - \tau_i)} & \begin{array}{l} \therefore \text{ SSFT } \frac{2\langle \bar{\sigma} \rangle}{a^2} = \tau - \tau_i \end{array} \\ &\leq \frac{1}{\sqrt{2S_i}} & \begin{array}{l} \therefore \text{ inequality } \frac{\sqrt{2y}}{x + y} \leq \frac{1}{\sqrt{2x}} \end{split}$$

\rightarrow Upper bound of multiplicity fluctuations

 $\frac{(\Delta_{ev}N)^2 - \langle N \rangle_{ev}}{\langle N \rangle_{ev}^2} \leq \frac{(\Delta_{ev}S_{tot,i})^2}{\langle S_{tot,i} \rangle_{ev}^2} + \frac{1}{2\langle S_{tot,i} \rangle_{ev}} \xrightarrow{R} + \frac{1}{2$

LHS: observables RHS: initial state →constraining initial state independently of intermediate dynamics?

SUMMARY

Summary

- Fluctuation-dissipation relation (FDR) for secondorder hydro, which determines the power of hydrodynamic fluctuations, has modifications proportional to τ_R in inhomogeneous and nonstatic systems
- Steady-state Fluctuation theorem (SSFT) holds for relativistic hydrodynamics with FDR modifications (for linear fluctuations)
- FDR modifications should be incorporated into dynamical models with relaxation times