On the multiple thimbles decomposition for the Thirring model

F. Di Renzo ${ }^{1}$ and K. Zambello ${ }^{1}$
${ }^{1}$ Dipartimento di Fisica dell'Università di Parma and INFN - Gruppo collegato di Parma

XQCD 2019, Tokyo, June 24 - June 26, 2019

Thimble regularization

$■$ Main idea: complexification of d.o.f. + deformation of integration domain

$$
\int_{\mathcal{R}} d z^{n} O(z) e^{-S(z)}=\sum_{\sigma} n_{\sigma} e^{-i S_{\sigma}^{\prime}} \int_{J_{\sigma}} d z^{n} O(z) e^{-S_{\sigma}^{R}}
$$

- The thimble \mathcal{J}_{σ} attached to a critical point p_{σ} is the union of the steepest ascent paths leaving p_{σ}

$$
\frac{d z_{i}}{d t}=\frac{\partial \bar{S}}{\partial \bar{z}_{i}} \text {, with i.c. } z_{i}(-\infty)=z_{\sigma, i}
$$

Along the flow, the imaginary part of the action is constant.

- The tangent space at p_{σ} is spanned by the Takagi vectors, which can be found by diagonalizing the Hessian at the critical point

$$
H\left(p_{\sigma}\right) v^{(i)}=\lambda_{i}^{\sigma} \bar{\nu}^{(i)}
$$

Sampling thimbles

- A natural parametrization for a point on the thimble is $z \in \mathcal{J}_{\sigma} \leftrightarrow(\hat{n}, t)$, where \hat{n} defines the direction on the tangent plane along which the path leaves the critical point and t is the integration time.
- In this parametrization, the thimbles decomposition of an expectation value $\langle O\rangle$ takes the form

$$
\langle O\rangle=\frac{\sum_{\sigma} n_{\sigma} \int D \hat{n} 2 \sum_{i} \lambda_{i}^{\sigma} n_{i}^{2} \int d t e^{-S_{e f f}(\hat{n}, t)} O e^{i \omega(\hat{n}, t)}}{\sum_{\sigma} n_{\sigma} \int D \hat{n} 2 \sum_{i} \lambda_{i}^{\sigma} n_{i}^{2} \int d t e^{-S_{e f f}(\hat{n}, t)} e^{i \omega(\hat{n}, t)}}
$$

where the effective action $S_{\text {eff }}(\hat{n}, t) \equiv S_{R}(\hat{n}, t)-\ln |\operatorname{det} V(\hat{n}, t)|$ and the residual phase $e^{i \omega(\hat{n}, t)} \equiv e^{i \arg (\operatorname{det} V(\hat{n}, t))}$ are obtained from the parallel transported basis of the tangent space $V(\hat{n}, t)$.

■ When only one thimble contributes, one can rewrite $\langle O\rangle=\frac{\left\langle O e^{i \omega}\right\rangle_{\sigma}}{\left\langle e^{i \omega}\right\rangle_{\sigma}}$, having defined $\langle f\rangle_{\sigma}=\int D \hat{n} \frac{Z_{\hat{n}}}{Z_{\sigma}} f_{\hat{n}}$ with

$$
\begin{aligned}
& Z_{\hat{n}} \equiv\left(2 \sum_{i} \lambda_{i}^{\sigma} n_{i}^{2}\right) \int d t e^{-S_{e f f}(\hat{n}, t)} \\
& Z_{\sigma} \equiv \int D \hat{n} Z_{\hat{n}} \\
& f_{\hat{n}} \equiv \frac{1}{Z_{\hat{n}}}\left(2 \sum_{i} \lambda_{i}^{\sigma} n_{i}^{2}\right) \int d t f(\hat{n}, t) e^{-S_{e f f}(\hat{n}, t)} \\
& \rightarrow \text { importance sampling, } P_{a c c}\left(\hat{n}^{\prime} \leftarrow \hat{n}\right)=\min \left(1, \frac{Z_{\hat{n}^{\prime}}}{Z_{\hat{n}}}\right) .
\end{aligned}
$$

- This can be generalized to more than one thimble:

$$
\langle O\rangle=\frac{\sum_{\sigma} n_{\sigma} Z_{\sigma}\left\langle O e^{i \omega}\right\rangle_{\sigma}}{\sum_{\sigma} n_{\sigma} Z_{\sigma}\left\langle e^{i \omega}\right\rangle_{\sigma}}
$$

Weights

How to compute the weights of the thimbles?

- If only two thimbles are relevant, one may give up prediction power on one observable and compute the relative weight from

$$
\langle O\rangle=\frac{n_{0} Z_{0}\left\langle O e^{i \omega}\right\rangle_{0}+n_{12} Z_{12}\left\langle O e^{i \omega}\right\rangle_{12}}{n_{0} Z_{0}\left\langle e^{i \omega}\right\rangle_{0}+n_{12} Z_{12}\left\langle e^{i \omega}\right\rangle_{12}}=\frac{\left\langle O e^{i \omega}\right\rangle_{0}+\alpha\left\langle O e^{i \omega}\right\rangle_{12}}{\left\langle e^{i \omega}\right\rangle_{0}+\alpha\left\langle e^{i \omega}\right\rangle_{12}}
$$

Applied to QCD-(0+1) in Ref. [1].

- One may also compute the semiclassical weights and then their corrections $\square \frac{Z_{\sigma}^{G}}{\Sigma_{\sigma^{\prime}}^{G} Z_{\sigma^{\prime}}^{G}}$ (semiclassical weights)
2 $Z_{\sigma}^{G}=\int D \hat{n} \frac{Z_{n}^{G}}{Z_{\hat{n}}} Z_{\hat{n}}=Z_{\sigma} \int D \hat{n} \frac{Z_{n}^{G}}{Z_{\hat{n}}} \frac{Z_{\hat{n}}}{Z_{\sigma}}=Z_{\sigma}\left\langle\frac{Z_{n}^{G}}{Z_{\hat{n}}}\right\rangle \rightarrow \frac{Z_{\sigma}}{Z_{\sigma}^{G}}=\left\langle\frac{Z_{n}^{G}}{Z_{\hat{n}}}\right\rangle^{-1}$
From (1) and (2) one obtains $\frac{Z_{\sigma}}{\sum_{\sigma^{\prime}} Z_{\sigma^{\prime}}^{G}}$, which is what we want up to a normalization factor. Applied to HDQCD in Ref. [2].

$(0+1)$ - dimensional Thirring model

■ Let's consider the $(0+1)$ - dimensional Thirring model

$$
\begin{gathered}
S=\beta \sum\left(1-\cos \left(z_{n}\right)\right)+\log \operatorname{det} D \\
\operatorname{det} D=\frac{1}{2^{L-1}}\left(\cosh \left(L \hat{\mu}+i \sum z_{n}\right)+\cosh (L \hat{m})\right), \hat{\mu} \equiv a \mu, \hat{m}=a \sinh (a m)
\end{gathered}
$$

It has been shown before that one thimble is not enough to capture the full content of the theory (see Ref. [3]; see also Ref. [4]).

- Can we collect contributions coming from more than one thimble with our approach?

Critical points
■ The critical points are found by imposing

$$
\frac{\partial S}{\partial z_{n}}=\beta \sin \left(z_{n}\right)-i \frac{\sinh \left(L \mu+i \sum z_{n}\right)}{\cosh \left(L \mu+i \sum z_{n}\right)+\cosh (L m)}=0
$$

The second term depends on the fields only through the sum $s \equiv \sum z_{n}$, then it must be $\sin \left(z_{n}\right)=\sin (z) \forall n$ and z_{n} can be either z or $\pi-z$. Following Ref. [3] we define n_{-}as the number of flipped components.

- To find out which thimbles give relevant contributions we look at the S_{I} vs μ plot for possible Stokes phenomena, after which the intersection number can change. We focus on the critical points in the $n_{-}=0$ sector for $L=2, \beta=1$ and $\mu=0.0 \ldots 2.0$:

Numerical integration

- For $L=2$ and $\beta=1$ we have only 2 degrees of freedom and we can integrate numerically. Results from 1 (red data) and 3 thimbles (blue data):

One can notice a strong dependence of Z_{n} on $n_{0} . n_{0}$ is the component of the initial displacement on the tangent space at the critical point associated to the larger Takagi value. Sharp peaks show up at given values of n_{0}. These observations appear to hold also for higher L

Preliminary results from MC

- Results for $L=2$ and $\beta=1$ from 1 (red data) and 3 thimbles (blue data):

- Results for $L=4$ and $\beta=1$ from 1 (red data) and 3 thimbles (blue data):

Exploring alternative approaches

■ The idea is to apply Taylor expansion in a region where there is a simpler thimble decomposition. The rationale for it: Stokes phenomena encode discontinuities in the thimble decomposition, not in the observables.

For $L=2$ only one thimble gives a relevant contribution at $\beta=1, \mu=0.15$. Here we show the results for $\beta=1$ and $\mu=0.30,0.45$ computed from a Taylor expansion at $\mu=0.15$ (blue data) on that
 single thimble.

Conclusions

■ We have studied the $(0+1)$-dimensional Thirring model for $L=2$ and $L=4$ at a strong coupling $\beta=1$.

- Discrepancies between the analytical solution and the results from one thimble simulations seem to disappear keeping into account the two sub-leading thimbles (actually only one, due to a simmetry).
- We started applying Taylor expansions (this is a one thimble computation!)

