Conductivity of quark-gluon plasma in the presence of external magnetic field

N. Astrakhantsev, V.Braguta, M. D'Elia, A. Kotov,
A. Nikolaev, F. Sanfilippo

UNIVERSITÀ DI PISA

Swansea University Prifysgol Abertawe

XQCD 2019
26 June 2019

Heavy ion collisions - large $e B$

In non-central heavy ion collisions very strong magnetic field may emerge: $|e \vec{B}| \sim(3-10) m_{\pi}^{2}$

Chiral magnetic effect (CME)

K. Fukushima, D. Kharzeev, H.J. Warringa, PRD78 (2008) 074033 "A system with a nonzero chirality responds to a magnetic field by inducing a current along the magnetic field. This is the Chiral Magnetic Effect."

- macroscopic effect of microscopic dynamics of QCD
- allows probing the topological structure of $S U(3)$ gauge field
- non-dissipative, topologically protected

CME current

Parallel \vec{E} and \vec{B} - topologically non-trivial EM-field (non-zero winding number), Adler-Bell-Jackiw chiral anomaly generates topological density:

$$
\frac{d \rho_{5}}{d t}=\frac{q^{2}}{2 \pi^{2}} \vec{E} \cdot \vec{B}
$$

Nielsen and Ninomiya energy argument:

$$
\begin{gathered}
\vec{j} \cdot \vec{E}=\mu_{5} \frac{d \rho_{5}}{d t}=\frac{q^{2} \mu_{5}}{2 \pi^{2}} \vec{E} \cdot \vec{B} \Longrightarrow \\
\vec{j}=\frac{q^{2} \mu_{5}}{2 \pi^{2}} \vec{B}
\end{gathered}
$$

The expression for j can be also calculated microscopically and is independent on the model.

From ρ_{5} to μ_{5}

Chirality-changing processes:

$$
\frac{d \rho_{5}}{d t}=-\rho_{5} / \tau+\frac{q^{2}}{2 \pi^{2}} \vec{E} \cdot \vec{B} \Longrightarrow \rho_{5}=\frac{q^{2}}{2 \pi^{2}} \vec{E} \cdot \vec{B} \tau
$$

At small $\mu_{5} \ll T, \mu_{5} \ll \sqrt{q B}, \rho_{5}=\chi(B, T) \mu_{5}$

1. $T \gg \sqrt{q B}$, temperature dominates: $\chi(B, T)=T^{2} / 3$,
2. $T \ll \sqrt{q B}, 1$ st Landau level degeneracy:

$$
\chi(B, T)=|q B| / 2 \pi^{2}
$$

Linear response theory:

$$
j_{\mathrm{CME}}^{i}=\sigma_{\mathrm{CME}}^{i j} E^{j}, \quad \sigma_{\mathrm{CME}}^{i j}=\frac{q^{4}}{8 \pi^{4}} \frac{\tau}{\chi(T, B)} B^{i} B^{j}
$$

CME observation: QCD

- CME current forms dipole in the QGP fireball that affects hadron production at freeze-out

$$
\begin{aligned}
& \frac{d N_{ \pm}}{d \phi} \propto 1+2 v_{1} \cos \phi+2 v_{2} \cos 2 \phi+\ldots+2 a_{ \pm} \sin \phi+\ldots \\
& \text { where } a_{ \pm}= \pm \mu_{5}|\vec{B}|
\end{aligned}
$$

- However, μ_{5} sign is event-dependent - can not observe \mathcal{P}-odd $a_{ \pm}$directly (this would mean global \mathcal{P}-symmetry violation in QCD)

More complicated observables yet do not allow to 100%-confirm the existence of CME, but the data favors the existence of CME in QGP (see also the talk by Jinfeng Liao on Tuesday)

CME observation: Dirac semimetals

- Experimental: Q. Li et al., Observation of the chiral magnetic effect in ZrTe_{5}, Nature Physics 12, $550-554$ (2016)
- QMC: D. Boyda, V. Braguta, M. Katsnelson, A. Kotov, Lattice quantum Monte Carlo study of chiral magnetic effect in Dirac semimetals, Annals of Physics (2018), arXiv:1707.09810

experiment with ZrTe_{5}

σ_{CME} within QMC

Conductivity in external magnetic field

- $\vec{E} \| \vec{B}$
- $\dot{\rho}_{5}=\frac{q^{2}}{4 \pi^{2}}(\vec{E}, \vec{B})-\rho_{5} / \tau$,
τ - chirality-changing scattering time
- $\rho_{5}=\frac{q^{2} \tau}{4 \pi^{2}}(\vec{E}, \vec{B})$ for $\dot{\rho}_{5}=0$
- $\vec{J}_{\mathrm{CME}}=\frac{q^{2}}{2 \pi^{2}} \mu_{5} \vec{B}$
- $\vec{J}=\sigma \vec{E}+\frac{q^{2}}{2 \pi^{2}} \vec{B} \times \mu_{5}\left(\rho_{5} \sim \tau(\vec{E}, \vec{B})\right)$
- Large magnetoconductivity $\sigma_{\|}$
- Classically $\delta \sigma_{\|}=0$
- Observed in experiment (Weyl semimetals):
Q. Li et al., Nature Phys. 12 (2016) 550-554
H. Li et al., Nat. Comm. 7, 10301 (2016)

What happens in QCD?

Lattice details

- $N_{f}=2+1$, physical quark masses
- Staggered fermions with improved action
- $T=125 \mathrm{MeV}, 200 \mathrm{MeV}, 250 \mathrm{MeV}$
- Lattice sizes and steps:

a, fm	L_{s}	N_{t}
0.988	48	10
0.0618	64	16
0.0989	48	16
0.0493	64	16

- Integral Kubo equation

$$
C\left(\tau_{i}\right)=\int_{0}^{\infty} \frac{d \omega}{2 \pi} K\left(\tau_{i}, \omega\right) \rho(\omega), \quad K\left(\tau_{i}, \omega\right)=\frac{\cosh \omega\left(\beta-\tau_{i} / 2\right)}{\sinh \omega \beta / 2} \omega
$$

- Conductivity $\left(C_{e m}=q_{u}^{2}+q_{d}^{2}+q_{s}^{2}\right)$:

$$
\frac{\sigma}{T C_{\mathrm{em}}}=\frac{1}{6 C_{\mathrm{em}}} \lim _{\omega \rightarrow 0} \frac{\rho(\omega)}{\omega}
$$

The Backus-Gilbert method

- The method is designed for solving linear ill-defined problems with controllable regularization and systematic uncertainty.
- define the (normalized) resolution function δ as the linear combination of adjustable coefficients $q(\bar{\omega})$:

$$
\begin{aligned}
\tilde{\rho}(\bar{\omega}) & =\int d \omega \delta(\bar{\omega}, \omega) \rho(\omega) \\
\delta(\bar{\omega}, \omega) & =\sum_{i} q_{i}(\bar{\omega}) K\left(\tau_{i}, \omega\right)
\end{aligned}
$$

- minimize the BG-functional:

$$
\begin{gathered}
\mathcal{H}(\rho)=\lambda \mathcal{A}(\rho)+(1-\lambda) \mathcal{B}(\rho) \\
\mathcal{A}(\rho)=\int d \omega \delta(\bar{\omega}, \omega)(\omega-\bar{\omega})^{2}, \mathcal{B}(\rho)=\operatorname{Var}[\rho]=q^{T} C q
\end{gathered}
$$

The \mathcal{A} part is the width of the resolution function (2nd moment to make q_{i} easy to find), $\mathcal{B}(\rho)$ - make less dependent on data (regularize). The method provides $\rho(\omega)$ and $\delta(\bar{\omega}, \omega)$ as the output!

Rescaling and resolution function

Rescaling of the kernel $K(\tau, \omega) \rightarrow f(\omega) K(\tau, \omega)$ leads to reconstruction of $\rho(\omega) / f(\omega)$ instead of $\rho(\omega)$. For conductivity we take $f(\omega)=\omega$.

Figure: Sample resolution function peaked at $\bar{\omega}=0$ for rescaling $f(\omega)=\omega$.

The width is of order $\leqslant 3.5 T$ (not enough N_{τ}).

Ultraviolet contamination

Ultraviolet shape of the spectral function in the LO on the lattice:

$$
\rho_{\mathrm{UV}}(\omega)=C_{\mathrm{e} / \mathrm{o}} \frac{3}{4 \pi^{2}} \omega^{2} \tanh \left(\frac{\omega \beta}{4}\right) \frac{\rho_{\mathrm{lat}}(\omega)}{\rho_{\operatorname{cont}}(\omega)}
$$

In the free case $C_{\text {even }}=1 / 2, C_{\text {odd }}=3 / 2$

Staggered fermions and two branches

The staggered $\langle j j\rangle$ correlator has the oscillating structure:

$$
C(\tau)=A(\tau)+(-1)^{\tau} B(\tau)
$$

$$
\begin{equation*}
\Delta \sigma(0)=A \int_{\omega_{0}}^{\infty} d \omega \frac{\rho_{\mathrm{UV}}^{e}(\omega)+\rho_{\mathrm{UV}}^{o}(\omega)}{2} \delta(0, \omega) \tag{1}
\end{equation*}
$$

UV contribution estimation

- It is hard to do it model-independently
- We assume that spectral function approximately reads (QCD sum rules):

$$
\rho(\omega) \approx(B \omega)_{\text {small } \omega} \theta\left(\omega_{0}-\omega\right)+\left(A \rho_{\mathrm{UV}}(\omega)\right)_{\text {large } \omega} \theta\left(\omega-\omega_{0}\right)
$$

- The factor $A \approx 1$ accounts for radiative corrections, $\omega_{0}-$ threshold frequency.
- Fit in B. Brandt et al. [1512.07249], A. Amato et al. [1307.6763]: $A \approx 1, \omega_{0} \approx 7 T, \chi^{2} /$ ndof ~ 1.
- Take $f(\omega)=\rho_{\mathrm{UV}}(\omega)$, expect that

$$
\lim _{\omega \rightarrow \infty} \tilde{\rho}(\omega) / f(\omega)=A
$$

Ultraviolet reconstruction for $N_{t}=96, e B=0$

- In the free case $1 / 2$ and $3 / 2$ coefficients are obtained easily
- Interaction noticeably shifts $C_{\mathrm{e} / \mathrm{o}}$, but the sum is almost constant, $\left(C_{\mathrm{e}}+C_{\mathrm{O}}\right) / 2 \approx 1$

Ultraviolet reconstruction for $N_{t}=96$, finite $e B$

- Free case with $e B$: asymptotic region is shifted to higher ω
- Interaction noticeably shifts $C_{\mathrm{e} / \mathrm{o}}$, but the sum is almost constant, $\left(C_{\mathrm{e}}+C_{\mathrm{O}}\right) / 2 \approx 1$

Check at $e B=0$ and $e B>0$

- Our results are consistent for two different time extensions both at zero and finite $e B$
- Good agreement with previous studies at zero $e B$

Results at $e B=0$

- At $T=200 \mathrm{MeV}$ flat spectral function \rightarrow good analysis
- At $T=250 \mathrm{MeV}$ B. Brandt et al. report the rise of peak at zero \rightarrow possible underestimation

Conductivity at finite magnetic field

Idea: consider difference $C(t, e B)-C(t, e B=0)$ to possibly avoid UV contamination, also δ becomes narrower

- The peak grows around $\omega=0$, UV behavior is indeed small
- Correction due to the intermediate region is hard to estimate

Conductivity at finite magnetic field

- Linear growth is observed in $\sigma_{\|}$at $e B \gg T^{2}$
- The σ_{\perp} decay results from the Lorentz force acting on charged particles moving in the direction of $\vec{E} \perp \vec{B}$
- Estimation for chirality-changing scattering time from the slope of $\sigma_{\|}(e B)$ at $\sqrt{e B} \gg T$:

$$
\begin{aligned}
& \circ \tau=0.54(14) \mathrm{fm} / \mathrm{c} \text { at } T=200 \mathrm{MeV} \\
& \circ \tau=0.62(12) \mathrm{fm} / \mathrm{c} \text { at } T=250 \mathrm{MeV}
\end{aligned}
$$

