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Introduction

The Kraan—van Baar—Lee—Lu (KvBLL) calorons [1] are extensively
used to understand the confinement/deconfinement phase transition
the Yang—Mills theory at finite temperature [2]. The KvBLL caloron
IS a topological soliton solution of the self-dual equation of #i&(2)
Yang—Mills theory onS! x R? space with instanton charge, which con-
sists of BPS dyons having both electric and magnetic charges with no
trivial holonomy at spatial infinity.

Recently, we have found a novel dyon solution as a non-BPS soluti
of (non self-dual) field equations of a gauge-scalar model with the rad
ally fixed scalar field in the adjoint representation. This dyon solutior
of the gauge-scalar model is identified with the topological field con-
figuration of the Yang—Mills theory with a gauge-invariant gluon masg

term without scalar field, which is regarded as the low-energy effect

tive model of the Yang—Mills theory with mass gap. This follows from

the spontaneous breaking of gauge symmetry. Our dyon has the n
vanishing asymptotic value corresponding to the nontrivial holonomy
spatial infinity to be comparable with the KvBLL caloron. Thus we can

the gauge-independent Higgs mechanism [3] which does not rely 3:]
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propose another scenario for reproducing confinement/deconfinemgnt

our dyon solution.
In this poster, we show the existence of such dyons and discuss
characteristic properties, especially the asymptotic holonomy.

phase transition in the Yang—Mills theory at finite temperature based T
t

From the “complementary” gauge-scalar
model to the massive Yang—Mills theory

We introduce theSU(2) gauge scalar model aofi' x R3 space with a
periodicity 71

- 3 15‘ ar
Sis = /O ir / d wtrlgfwfw%—(.@ﬂ[d]@ (210) |, @)
where

A :
Dl |p = (DulA9)” Ta = Oug + iglet), 4.

(2)
(3)

Here we have chosen the Hermitian basiswf) by using the Pauli
matricess 4 as

Ty = %A. (A=1,2,3) (4)
The radial degree of the scalar fietdr) is fixed
2tr (¢(z)p(x)) = v*, v > 0. (5)
We define the normalized scalar fieldz) for latter convenience
b(2) = —o(x), 2t (Bla)d(x)) =1 (6)

To begin with, we construct a composkector boson fieldZ),(x)
from .27, (x) and¢(x) as

g 2u(w) = i[o(x), Duleo(x)], (7)

which transforms in the adjoint way under the gauge transformatiof

U(z) € SU(2):
L(x) = X (x) = Ulx) Z(x)UT (2). (8)

Moreover, the kinetic term of the scalar field Is identical to the mas$
term of the vector field? ,(z):

tr[(2ul)9) (2u[)0)] = Moyt (2, 2,), Mg = gv, (9)

as long as the constraint (5) holds. It is clear that by observing (8), the

obtained mass term ot , is gauge-invariant. Therefore,(x) can be-
come massive without breaking the original gauge symmétishould
be emphasized that we do not choose a specific vacuugaofand
hence no spontaneous symmetry breaking occurs.

By using the definition of the massive vector fielt],, the original
gauge field«, is separated into two pieces [4, = ¥, + Z,,, where
¥#,, can be written in terms of7, and¢ as

9Yu(x) = geu(x)o(x) — i[o(x), duo(x)], (10)

wherec,,(z) = 2tr (%@)@(x)).

Then, we regard a set of field variablés, (), 2, (z), ¢(x)} as
begin obtained from{.«7,(x), ¢(x)} based on a change of variables,
and identifyc,(z), Z,(x), and¢(x) with the fundamental field vari-

e

ables for describing the massive Yang—Mills theory anew, which means

that we should perform the quantization with respect to the variable
{eu(z), Zu(2), ¢o(x)} appearing in the path-integral measure. However,
the degrees of freedom carried byz) is extra if we wish to obtain

the (pure) Yang—Mills theory from the “complementary” gauge-scala

model. These two d.o.f.s are eliminated by imposing the two constraings

that we call theeduction conditionWe choose, e.qg.,

[6(2), Zul | Dl |$(x)] = 0.

The redug:tion condition indAeed eliminates the two extra d.o.f.s introt
duced byp(z), sincetr (X(x)gb(x)) = 0.

x(r) = (11)

Following the Faddeev—Popov procedure, we insert unity into thé
functional integral to incorporate the reduction condition:

] = / Dy’ § (X@) = / DY § (xe) Ared;

where ¢ = x|, gb9] IS the reduction condition gauge-rotated by
0 = 04(x)T4, andA, is the associated Faddeev—Popov determinant
Then we obtain

7 - / DEDA 5 (x) Ared exp {—Synil ] — Sanl?, ]}

- / DIDD X6 () Aeqexp {—Syml? + 2] — S Z]}. (13)

(12)

Therefore, we obtain the massive Yang—Mills theory that keeps the orig-
Inal gauge symmetry
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It should be remarked th#he solutions of the field equations of the
gauge-scalar model

'@M{%]g,&y T igUQ [gga @V[‘Q%]dz} — 07

Dl Dl )6 — 2tx (6l Dl 416) 6 = 0,

(15)
(16)

satisfy the reduction condition (11) automatical(8ut the converse is
not true.) From this fact, we find that the solutions of the coupled fielc
equations (15) and (16) can play the very important role of the configu
rations satisfying the reduction condition (11) in a massive Yang—Mills
theory through the path integral (13).

Construction of the Yang—Mills dyon

We adopt the Julia—Zee ansatz with a unit magnetic charge [5] for thie
Euclidean space

~
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goty(w) =Ta—alr), la) =Ta=—h(r)
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where Roman indices run fromto 3 andr is the radius ofR?, i.e.,

r = ,/Z;z;. Notice that this ansatz is “static”, i.e;;independent. The
fleld equations (15) and (16) are written in terms of the profile functiong
f(r),a(r), andh(r) as

7'(r) + 2@ (r) — —sa(r) F2(r) = 0,

F'(r) = — () = Fr)) = (@) + *"R(r)) () = 0. (20)
(%Z(T) - 1) (ﬁ”(m + %ﬁ’(m - %%(@f?@) —0.

r

(19)

(21)

The radially fixing constraint (5) is also written in terms?b{fﬂ) as

R (r)—1=0, (22)

which yields

h(r) = £1. (23)
Thus, the equation (21) is automatically satisfied by the constraint (5).
By substitutingh(r) = +1 into the equation (20), we obtain

7'r) = =5 (F) = J) = (@) + %2) Firy =0

For a numerical calculation, we introduce the dimensionless variable
p = gur and functionsi(r) = gva(p), f(r) = f(p), then the remaining
two equations become

(24)

o (p) + ' (p) = (p)(p) = 0. (25)
"(0) 5 (£0)~ 10)) ~ () +1) flo) =0.  (26)

0

Therefore, we solve the field equations (25) and (26) under the boundafy
conditions

(27)
(28)

a(00) = o,

f(o0) =0,

the dyon solution is obtained. It should be noticed that there is no cor}-
dition to specify the asymptotic value, of a(p). Notice that ifa(p) is

a solution of equations (25) and (26), then(p) is also a solution of
them. Therefore, we can restrict, > 0 without loosing the generality.
The solutiona(p) = 0 is the Yang—Mills magnetic monopole obtained

In [6].
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The Yang—Mills dyon cannot become self-dual for a finite asymptotic
valueas, Of a(p), the upper bound of the electric charges obtained
numerically as
qe
dm

< 1.

Y

(29)
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Asymptotic holonomy of the Yang—Mills dyon

We define the Polyakov loop operatbfx) as

1
tr(1)

where&? denotes the path-ordering prescription. The asymptotic holc
omy P Is defined by the Polyakov loop operator at the spatial infini

T—l
L(x) = tr & exp [zg/o dr o) (x, T)] , (30)

Poo = lim L(x). (31)

x| —00

By performing the gauge transformation to the unitary (or stringy) gau
oA (z) = 643, so that the “time” componen, () of the gauge field be-
comes diagonal

o g

g<t)(z) = gof @) Ta = alr)= = gvalp)=

S @

the asymptotic holonomy can be calculated as

1 r- o
Py = lim —trexple / dr 5(7“)—3]
x| —00 0 2
1 a a

where we have usetco) = gva(co) = guae.

As seen from the above figure, in the Yang—Mills dyon the asympta
valuea, of the profile functioru(r) can be expressed as a function ¢
the ratio of the chargeg /¢,,. This means that since we have fixed th
magnetic charge;, to the unitg,, = 47 /g, the asymptotic holonomy
P~o depends on the electric chargethroughao:

U

Poo = COs [g—qe(aoo)] . (34)

2T

The vanishing electric charge — 0 that is nothing but the Yang—Mills
monopole means,, — 0, which yields the trivial holonom{P,, — 1.
Conversely, the asymptotic holonomy becomes nontrivial as long as
Yang—Mills dyon has a nonzero electric charge. It should be compa
with the (anti-)self-dual dyons, which are the constituents of the KvBl
calorons. The electric charge of the (anti-)self-dual dyons cannot
changed continuously, since it is fixed by definitionyto= +q,,.

Conclusion and discussion

We obtained the novel dyon solution in t§&/(2) gauge-adjoint scalar
model whose radial degree of freedom is fixed. This dyon solution
S1x R3 space becomes the field configuration of $ii&2) Yang—Mills
theory with a gauge-invariant mass term through the path integral
rived by the gauge-independent description of the Brout—Englert—Hig
mechanism. We observed that the Yang—Mills dyon canoot acquire
electric charge equal to the magnetic charge. This is caused by a ga
Invariant mass term. In the contexts of the KvBLL calorons, the cc
stituent (anti-)self-dual dyon has the electric charge equal to the m
netic charge (up to its sign) by definition, however, there do not ex
such a self-dual object in our theory due to the mass term.

We also found that the Yang—Mills dyon it x R3 space has a nontriv-
lal holonomy. This implies that onon-self-dual) dyon with a nontriv-
lal holonomyP., can be used to explain the confinement/deconfinem:
phase transition in the Yang—Mills theory at finite temperature bas
on the dual superconductivity picture, instead of using the traditior
KvBLL calorons or the self-dual dyons

References

[1] T.C. Kraan and P. van Baal, Phys. Letd35, 389 (1998); Nucl.
Phys. B533 627 (1998).
K. Lee and C. Lu, Phys. Rev.43, 025011 (1998).

[2] D. Diakonov, Nucl. Phys. B (Proc. Suppl)5, 5 (2009).
M.A. Lopez-Ruiz, Y. Jiang, and J. Liao, Phys. Re\@ 1) 054026
(2018).

[3] K.-I. Kondo, Phys. Lett. B62 219 (2016); Eur. Phys. J. C78, 571
(2018).

[4] K.-I. Kondo, S. Kato, A. Shibata and T. Shinohara, Phys. Ref,
1 (2015).

[5] B. Julia and A. Zee, Phys. Revl, 2227 (1975).

[6] S. Nishino, R. Matsudo, M. Warschinke, and K.-l. Kondc
PTER2018 103B04 (2018).

[x] S. Nishino and K.-I. Kondo, will be available on arXiv.



