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Introduction TN rep. for the model Coarse-graining of the tensor network Numerical result

Complex ϕ4 theory (relativistic bose gas) at finite density

S =

∫
d2x

{
|∂νϕ|2 +

(
m2 − µ2

)
|ϕ|2 + µ (ϕ∗∂2ϕ− ∂2ϕ∗ϕ) + λ |ϕ|4

}
.

- ϕ: complex scalar field; ϕ = (ϕ1, ϕ2)

- m, λ, µ: mass, coupling, chemical potential

Typical model suffering from the severe sign problem

Many previous studies, e.g. [Endres 2007; Aarts 2009;

Gattringer and Kloiber 2013]

⇒ Good practice table
We analyze this model using TRG, a sign problem free

method.
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Tensor renormalization group (TRG) [Levin and Nave 2007]

1 Tensor network representation of Z

Z =
∑
{s}

e−βH[s] →
∑

...,i ,j,k,l ,...

· · ·Ti jklTymitTxunm · · ·

2 Coarse-graining of the tensor network

TT · · ·T → · · · Coarse-graining→ · · · →︸ ︷︷ ︸
X times

T (X)

3 Contraction of the “effective tensor” T (X)

Z ≈
∑
i ′,j ′

T
(X)

i ′ j ′ i ′ j ′

√
Deterministic data compression

√
Completely free of the sign problem

√
Systematic error is controlled by one

parameter (the size of T (X)).
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Examples of TRG study for relativistic field theories

Bosons:

- 2D real ϕ4 model [Shimizu 2012; Kadoh, Kuramashi, Nakamura, RS, Takeda,

Yoshimura 2019]

- 2D CP(1) model [Kawauchi and Takeda 2016]

(Gauged) fermions:

- 2D Schwinger model w/ θ term [Shimizu and Kuramashi 2014a, 2014b, 2018]

- 2D Thirring model w/ chemical potential [Takeda and Yoshimura 2015]

- 3D free fermions [RS, Takeda, Yoshimura 2017; Yoshimura et al. 2017]

Pure gauge theories:

- 2D/3D U(1) and SU(2) theory [Liu et al. 2013]

- 3D Z2 gauge theory [Kuramashi and Yoshimura 2018]

Supersymmetric theory

- 2D N = 1 Wess–Zumino model [Kadoh, Kuramashi, Nakamura, RS, Takeda,
Yoshimura 2018]
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Ex) partition function of the 2D Ising model

Z =
∑
{s}

e−βH[s] =
∑
{s}

∏
⟨n,m⟩

eβsnsm ,

H [s] = −
∑
⟨n,m⟩

snsm

How to construct a tensor network representation of Z:

1 Expand the Boltzmann factor

- High T expansion: eβsnsm = coshβ
∑1
inm=0

(snsm tanhβ)
inm

2 Reread
∏
⟨n,m⟩ as

∏
n, and trace out the old d.o.f. (spin s)

3 Consider the remaining integer d.o.f. as tensor indices
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Partition function of the 2D complex ϕ4 model

Z =

∫
Dϕ1Dϕ2e−S,

S =
∑
n

[ (
4 +m2

)
|ϕn|2 + λ |ϕn|4 −

2∑
ν=1

(
eµδν,2ϕ∗nϕn+ν̂ + e

−µδν,2ϕ∗n+ν̂ϕn

)]

- ϕ: complex scalar field; ϕ = (ϕ1, ϕ2)

- m, λ, µ: mass, coupling, chemical potential

- n, ν̂: lattice coordinate, unit vector along ν-direction

How to construct a tensor network representation of Z:

1 Expand the Boltzmann factor

- cf. Ising model: high T expansion

2 Integrate out the original d.o.f. (the scalar field ϕ)

3 Consider the remaining integer d.o.f. as tensor indices
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TN rep. of scalar theory

Since S takes nearest-neighbor form,

e−S =
∏
n

∏
ν

fν (ϕn, ϕn+ν̂) ,

fν (ϕ1, ϕ2) = exp
{
−
1

4

(
4 +m2

) (
|ϕ1|2 + |ϕ2|2

)
−
λ

4

(
|ϕ1|4 + |ϕ2|4

)
+ eµδν,2ϕ∗1ϕ2 + e

−µδν,2ϕ1ϕ
∗
2

}
.

If f can be decomposed using discrete d.o.f,

f (ϕn, ϕn+µ̂) =
∑
i

Uϕn iσiV
†
iϕn+µ̂
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TN rep. of scalar theory

Since S takes nearest-neighbor form,

e−S =
∏
n

∏
ν

fν (ϕn, ϕn+ν̂) ,

fν (ϕ1, ϕ2) = exp
{
−
1

4

(
4 +m2

) (
|ϕ1|2 + |ϕ2|2

)
−
λ

4

(
|ϕ1|4 + |ϕ2|4

)
+ eµδν,2ϕ∗1ϕ2 + e

−µδν,2ϕ1ϕ
∗
2

}
.

If f can be decomposed using discrete d.o.f,

Ti jkl =

∫
dϕn
√
σiσjσkσlUϕn iUϕn jV

†
kϕn
V †lϕn
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Gauss–Hermite quadrature rule

∫ ∞
−∞
dϕe−ϕ

2

g (ϕ) ≈
K∑
α=1

wαg (xα)

- g (ϕ): (well-behaved) arbitrary function 1

- K: degree of the Hermite polynomial

- xα: α-th root of the Hermite polynomial

- wα: α-th weight of the GH quadrature

1If g is a polynomial function of order 2K − 1 or less, the Gaussian quadrature
rule yields the exact solution.
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Spectral decomposition of local Boltzmann weight

Replace integral of ϕn using GH quadrature: ϕn = (ϕn,1, ϕn,2)→ (xα1 , xα2)
(Interpolate f using the roots of the Hermite polynomial)∫

dϕn,1dϕn,2

2∏
ν=1

fν ((ϕn−ν̂,1, ϕn−ν̂,2) , (ϕn,1, ϕn,2))

· fν ((ϕn,1, ϕn,2), (ϕn+ν̂,1, ϕn+ν̂,2))

≈
K∑

α1,α2=1

wα1wα2e
x2α1
+x2α2

2∏
ν=1

fν ((ϕn−ν̂,1, ϕn−ν̂,2) , (xα1 , xα2))

· fν ((xα1 , xα2), (ϕn+ν̂,1, ϕn+ν̂,2)) ,

- K: degree of the Hermite polynomial

- xα: α-th root of the Hermite polynomial

- wα: α-th weight of the GH quadrature
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Spectral decomposition of local Boltzmann weight

Replace integral of ϕn using GH quadrature: ϕn = (ϕn,1, ϕn,2)→ (xα1 , xα2)
(Interpolate f using the roots of the Hermite polynomial)∫

dϕn,1dϕn,2

2∏
ν=1

fν ((ϕn−ν̂,1, ϕn−ν̂,2) , (ϕn,1, ϕn,2))

· fν ((ϕn,1, ϕn,2), (ϕn+ν̂,1, ϕn+ν̂,2))

≈
K∑

α1,α2=1

wα1wα2e
x2α1
+x2α2

2∏
ν=1

fν ((ϕn−ν̂,1, ϕn−ν̂,2) , (xα1 , xα2))

· fν ((xα1 , xα2), (ϕn+ν̂,1, ϕn+ν̂,2)) ,

fν (ϕn, ϕn+ν̂)→ fν ((xα1 , xα2) , (xβ1 , xβ2)) =
K2∑
m=1

U(xα1 ,xα2 )mσmV
†
m(xβ1

,xβ2
)

f becomes a matrix and can be numerically decomposed by singular

values!
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Tensor network representation

Z =

∫
Dϕ1Dϕ2e−S ≈

∑
i ,j,k,l ,...

Ti jklTmnio · · ·

Z is written as
∫
of field ϕ →

∑
of tensor indices i , j, k, . . . !

TN rep. of Green’s functions can be similarly constructed.

This is just another representation of original quantity,

and it is hard to fully contract the tensor indices.

→ coarse-graining of tensor network
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Coarse-graining of the tensor network

Eckart–Young theorem [Eckart and Young 1936] states that

the SVD is the best low rank approximation of a matrix 2.

Ti jkl = M(jk)(l i) =

D2∑
m=1

U(jk)mσmV
†
m(l i)

≈
Dcut∑
m=1

U(jk)mσmV
†
m(l i)

← the best approx!

- 1 ≤ i , j, k, l ≤ D
- Dcut < D

2

- σ1 ≥ σ2 ≥ · · · ≥ σD2 ≥ 0

2The Frobenius norm of the difference between the original and the approximated

matrices is minimized.
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Coarse-graining of the tensor network

Eckart–Young theorem [Eckart and Young 1936] states that

the SVD is the best low rank approximation of a matrix.

# of lattice sites is reduced by 1/2 through a single cycle.

TN is uniform. ⇒ One needs to just repeat local procedures.
Total cost ∝ log2 (Vol.).
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Silver Blaze phenomenon
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m2 = 0.01, λ = 1, K2 = 4096, D = 64.
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Average of phase factor
⟨
e iθ

⟩
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Z
/Z

pq

µ

Zpq =

∫
Dϕ1Dϕ2e−Re(S).

m2 = 0.01, λ = 1, K2 = 4096, D = 64, V = 8× 128.
In the large µ region, the ratio deviates from 1,

and the sign problem is severe.
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naive TRG vs. sign problem free formulation of Z

Using

polar coordinate expression: ϕn = (ϕn,1, ϕn,2)→ (rn cos θn, rn sin θn),
character expansion: ex cos z =

∑∞
l=−∞ Il (x) e

i lz for x ∈ R, z ∈ C,
Z can be expressed in a sign problem free version:

Z =

∏
n

∞∑
ln,1,ln,2=−∞

(∏
n

∫ ∞
0

drn

)∏
n

2πrn

2∏
ν=1

e−
1
4 (4+m2)(r2n+r2n+ν̂)−

λ
4 (r4n+r4n+ν̂)

· Iln,ν (2rnrn+ν̂) e ln,νµδν,2δ(ln,1+ln,2−ln−1̂,1−ln−2̂,2),0

Il : modified Bessel function of first kind (non-negative)

[Endres 2007] (cf. loop formulation, world line representation).

Efficient MC evaluation using worm algorithm [Orasch and Gattringer 2018]
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naive TRG vs. sign problem free formulation of Z
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left) naive TRG and Endres’s form w/ TRG, V = 8× 128.
right) Endres’s form w/ worm, V = 10× 100 (adapted from [Orasch and
Gattringer 2018]).

m2 = 0.01, λ = 1.

D = 64, truncation order of CE = 128 (in left panel).

Good agreement in the large µ region (severe sign problem region)
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Summary and outlook

TN formulation of the 2D complex ϕ4 theory

Silver Blaze phenomenon is observed

Result by naive TRG is consistent with those of sign problem

free formulation

In future

Phase diagram

Properties of Silver Blaze transition

Complicated models (e.g. SUSY and chiral gauge theories)

- 2D N = 1 WZ model [Kadoh, Kuramashi, Nakamura, RS, Takeda, Yoshimura 2018]
- 3D will be reasonable in the viewpoint of both accuracy and

computational complexity

- 4D application is still limited to Ising model [Akiyama et al. 2019]

(but hopeful result!)
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