Tensor network study of two dimensional complex ϕ^{4} theory at finite density

R. Sakai, D. Kadoh ${ }^{1,2}$, Y. Kuramashi ${ }^{3}$, Y. Nakamura ${ }^{4}$, S. Takeda, and Y. Yoshimura ${ }^{3}$

Kanazawa Univ., RECNS, Keio Univ. ${ }^{1}$, Chulalongkorn Univ. ${ }^{2}$, CCS, Univ. of Tsukuba ${ }^{3}$, RIKEN R-CCS ${ }^{4}$

$$
\begin{aligned}
& \text { June 26, } 2019 \\
& \text { XQCD } 2019
\end{aligned}
$$

Tokyo Campus, University of Tsukuba

Complex ϕ^{4} theory (relativistic bose gas) at finite density

$$
S=\int \mathrm{d}^{2} x\left\{\left|\partial_{\nu} \phi\right|^{2}+\left(m^{2}-\mu^{2}\right)|\phi|^{2}+\mu\left(\phi^{*} \partial_{2} \phi-\partial_{2} \phi^{*} \phi\right)+\lambda|\phi|^{4}\right\}
$$

- ϕ : complex scalar field; $\phi=\left(\phi_{1}, \phi_{2}\right)$
- m, λ, μ : mass, coupling, chemical potential

■ Typical model suffering from the severe sign problem
■ Many previous studies, e.g. [Endres 2007; Aarts 2009; Gattringer and Kloiber 2013] \Rightarrow Good practice table
■ We analyze this model using TRG, a sign problem free method.

Tensor renormalization group (TRG) [Levin and Nave 2007]

1 Tensor network representation of Z

$$
Z=\sum_{\{s\}} e^{-\beta H[s]} \rightarrow \sum_{\ldots, i, j, k, l, \ldots} \cdots T_{i j k l} T_{y m i t} T_{x u n m} \cdots
$$

2 Coarse-graining of the tensor network

$$
T T \cdots T \underbrace{\rightarrow \cdots \stackrel{\text { Coarse-graining }}{\rightarrow} \cdots \rightarrow}_{x \text { times }} T^{(X)}
$$

3 Contraction of the "effective tensor" $T^{(X)}$

$$
Z \approx \sum_{i^{\prime}, j^{\prime}} T_{i^{\prime} j^{\prime} i^{\prime} j^{\prime}}^{(X)}
$$

$$
Z \approx \sum_{i^{\prime}, j^{\prime}} \stackrel{j^{i^{\prime}} \bigcap_{0}^{T^{\prime}(x)}}{ }
$$

\checkmark Deterministic data compression
$\sqrt{ }$ Completely free of the sign problem
$\sqrt{ }$ Systematic error is controlled by one parameter (the size of $T^{(X)}$).

Examples of TRG study for relativistic field theories

- Bosons:
- 2D real ϕ^{4} model [Shimizu 2012; Kadoh, Kuramashi, Nakamura, RS, Takeda, Yoshimura 2019]
- 2D CP(1) model [Kawauchi and Takeda 2016]

■ (Gauged) fermions:

- 2D Schwinger model w/ θ term [Shimizu and Kuramashi 2014a, 2014b, 2018]
- 2D Thirring model w/ chemical potential [Takeda and Yoshimura 2015]
- 3D free fermions [RS, Takeda, Yoshimura 2017; Yoshimura et al. 2017]
- Pure gauge theories:
- 2D/3D $U(1)$ and $S U(2)$ theory [Liu et al. 2013]
- 3D Z_{2} gauge theory [Kuramashi and Yoshimura 2018]

■ Supersymmetric theory

- 2D $\mathcal{N}=1$ Wess-Zumino model [Kadoh, Kuramashi, Nakamura, RS, Takeda, Yoshimura 2018]

Ex) partition function of the 2D Ising model

$$
\begin{aligned}
& Z=\sum_{\{s\}} e^{-\beta H[s]}=\sum_{\{s\}} \prod_{\langle n, m\rangle} e^{\beta s_{n} s_{m}}, \\
& H[s]=-\sum_{\langle n, m\rangle} s_{n} s_{m}
\end{aligned}
$$

How to construct a tensor network representation of Z :
1 Expand the Boltzmann factor

- High T expansion: $e^{\beta s_{n} s_{m}}=\cosh \beta \sum_{i_{n m}=0}^{1}\left(s_{n} s_{m} \tanh \beta\right)^{i_{n m}}$

2 Reread $\prod_{\langle n, m\rangle}$ as \prod_{n}, and trace out the old d.o.f. (spin s)

3 Consider the remaining integer d.o.f. as tensor indices

Partition function of the 2D complex ϕ^{4} model

$$
\begin{aligned}
Z & =\int \mathcal{D} \phi_{1} \mathcal{D} \phi_{2} e^{-S} \\
S & =\sum_{n}\left[\left(4+m^{2}\right)\left|\phi_{n}\right|^{2}+\lambda\left|\phi_{n}\right|^{4}-\sum_{\nu=1}^{2}\left(e^{\mu \delta_{\nu, 2} \phi_{n}^{*} \phi_{n+\hat{\nu}}}+e^{-\mu \delta_{\nu, 2} \phi_{n+\hat{\nu}}^{*} \phi_{n}}\right)\right]
\end{aligned}
$$

- $\phi:$ complex scalar field; $\phi=\left(\phi_{1}, \phi_{2}\right)$
- m, λ, μ : mass, coupling, chemical potential
- $n, \hat{\nu}$: lattice coordinate, unit vector along ν-direction

How to construct a tensor network representation of Z :
1 Expand the Boltzmann factor

- cf. Ising model: high T expansion

2 Integrate out the original d.o.f. (the scalar field ϕ)
3 Consider the remaining integer d.o.f. as tensor indices

TN rep. of scalar theory

- Since S takes nearest-neighbor form,

$$
\begin{aligned}
& e^{-S}=\prod_{n} \prod_{\nu} f_{\nu}\left(\phi_{n}, \phi_{n+\hat{\nu}}\right), \\
& f_{\nu}\left(\phi_{1}, \phi_{2}\right)=\exp \{ -\frac{1}{4}\left(4+m^{2}\right)\left(\left|\phi_{1}\right|^{2}+\left|\phi_{2}\right|^{2}\right)-\frac{\lambda}{4}\left(\left|\phi_{1}\right|^{4}+\left|\phi_{2}\right|^{4}\right) \\
&\left.+e^{\mu \delta_{\nu, 2}} \phi_{1}^{*} \phi_{2}+e^{-\mu \delta_{\nu, 2}} \phi_{1} \phi_{2}^{*}\right\} .
\end{aligned}
$$

- If f can be decomposed using discrete d.o.f,

$$
f\left(\phi_{n}, \phi_{n+\hat{\mu}}\right)=\sum_{i} U_{\phi_{n} i} \sigma_{i} V_{i \phi_{n+\mu}}^{\dagger}
$$

TN rep. of scalar theory

- Since S takes nearest-neighbor form,

$$
\begin{aligned}
& e^{-S}=\prod_{n} \prod_{\nu} f_{\nu}\left(\phi_{n}, \phi_{n+\hat{\nu}}\right), \\
& f_{\nu}\left(\phi_{1}, \phi_{2}\right)=\exp \{ -\frac{1}{4}\left(4+m^{2}\right)\left(\left|\phi_{1}\right|^{2}+\left|\phi_{2}\right|^{2}\right)-\frac{\lambda}{4}\left(\left|\phi_{1}\right|^{4}+\left|\phi_{2}\right|^{4}\right) \\
&\left.+e^{\mu \delta_{\nu, 2}} \phi_{1}^{*} \phi_{2}+e^{-\mu \delta_{\nu, 2}} \phi_{1} \phi_{2}^{*}\right\} .
\end{aligned}
$$

- If f can be decomposed using discrete d.o.f,

$$
\begin{aligned}
& T_{i j k l}=\int \mathrm{d} \phi_{n} \sqrt{\sigma_{i} \sigma_{j} \sigma_{k} \sigma_{l}} U_{\phi_{n} i} U_{\phi_{n} j} V_{k \phi_{n}}^{\dagger} V_{l \phi_{n}}^{\dagger} \\
& \left.\int \mathrm{d} \phi_{n} k \frac{\phi_{n}}{V^{\dagger}}\right|_{V^{\dagger}} ^{j} i \rightarrow k \underbrace{j}_{T} i
\end{aligned}
$$

Gauss-Hermite quadrature rule

$$
\int_{-\infty}^{\infty} \mathrm{d} \phi \mathrm{e}^{-\phi^{2}} g(\phi) \approx \sum_{\alpha=1}^{K} w_{\alpha} g\left(x_{\alpha}\right)
$$

- $g(\phi)$: (well-behaved) arbitrary function ${ }^{1}$
- K : degree of the Hermite polynomial
- $x_{\alpha}: \alpha$-th root of the Hermite polynomial
- w_{α} : α-th weight of the GH quadrature
${ }^{1}$ If g is a polynomial function of order $2 K-1$ or less, the Gaussian quadrature rule yields the exact solution.

Spectral decomposition of local Boltzmann weight

Replace integral of ϕ_{n} using GH quadrature: $\phi_{n}=\left(\phi_{n, 1}, \phi_{n, 2}\right) \rightarrow\left(x_{\alpha_{1}}, x_{\alpha_{2}}\right)$ (Interpolate f using the roots of the Hermite polynomial)

$$
\begin{aligned}
& \int \mathrm{d} \phi_{n, 1} \mathrm{~d} \phi_{n, 2} \prod_{\nu=1}^{2} f_{\nu}\left(\left(\phi_{n-\hat{\nu}, 1}, \phi_{n-\hat{\nu}, 2}\right),\left(\phi_{n, 1}, \phi_{n, 2}\right)\right) \\
& \quad \approx \sum_{\alpha_{1}, 1, \phi_{n}=1}^{K} w_{\alpha_{1}} w_{\alpha_{2}} e^{x_{\alpha_{1}}^{2}+x_{\alpha_{2}}^{2}} \prod_{\nu=1}^{2} f_{\nu}\left(\left(\phi_{n+\hat{\nu}, 1}, \phi_{n+\hat{\nu}, 2}\right)\right) \\
& \left.\left.f_{\nu-\hat{\nu}, 1}, \phi_{n-\hat{\nu}, 2}\right),\left(x_{\alpha_{1}}, x_{\alpha_{2}}\right)\right) \\
& \left.\left., x_{\alpha_{2}}\right),\left(\phi_{n+\hat{\nu}, 1}, \phi_{n+\hat{\nu}, 2}\right)\right),
\end{aligned}
$$

- K: degree of the Hermite polynomial
- $x_{\alpha}: \alpha$-th root of the Hermite polynomial
- $w_{\alpha}: \alpha$-th weight of the GH quadrature

Spectral decomposition of local Boltzmann weight

Replace integral of ϕ_{n} using GH quadrature: $\phi_{n}=\left(\phi_{n, 1}, \phi_{n, 2}\right) \rightarrow\left(x_{\alpha_{1}}, x_{\alpha_{2}}\right)$ (Interpolate f using the roots of the Hermite polynomial)

$$
\begin{gathered}
\int \mathrm{d} \phi_{n, 1} \mathrm{~d} \phi_{n, 2} \prod_{\nu=1}^{2} f_{\nu}\left(\left(\phi_{n-\hat{\nu}, 1}, \phi_{n-\hat{\nu}, 2}\right),\left(\phi_{n, 1}, \phi_{n, 2}\right)\right) \\
\approx \sum_{\alpha_{1}, \alpha_{2}=1}^{K} w_{\alpha_{1}} w_{\alpha_{2}} e^{x_{\alpha_{1}}^{2}+x_{\alpha_{2}}^{2}} \prod_{\nu=1}^{2} f_{\nu}\left(\left(\phi_{n-\hat{\nu}, 1}, \phi_{n-\hat{\nu}, 2}\right),\left(x_{\alpha_{1}}, x_{\alpha_{2}}\right)\right) \\
f_{\nu}\left(\left(x_{\alpha_{1}}, x_{\alpha_{2}}\right),\left(\phi_{n+\hat{\nu}, 1}, \phi_{n+\hat{\nu}, 2}\right)\right) \\
\left.\left.\phi_{n+\hat{\nu}, 2}\right)\right)
\end{gathered}
$$

■ f becomes a matrix and can be numerically decomposed by singular values!

Tensor network representation

$$
Z=\int \mathcal{D} \phi_{1} \mathcal{D} \phi_{2} e^{-S} \approx \sum_{i, j, k, l, \ldots} T_{i j k l} T_{m n i o} \cdots
$$

■ Z is written as \int of field $\phi \rightarrow \sum$ of tensor indices i, j, k, \ldots !
■ TN rep. of Green's functions can be similarly constructed.
■ This is just another representation of original quantity, and it is hard to fully contract the tensor indices.
\rightarrow coarse-graining of tensor network

Coarse-graining of the tensor network

Eckart-Young theorem [Eckart and Young 1936] States that the SVD is the best low rank approximation of a matrix ${ }^{2}$.

$$
\begin{aligned}
T_{i j k l}=M_{(j k)(l i)} & =\sum_{m=1}^{D^{2}} U_{(j k) m} \sigma_{m} V_{m(l i)}^{\dagger} \\
& \approx \sum_{m=1}^{D_{\mathrm{cut}}} U_{(j k) m} \sigma_{m} V_{m(l i)}^{\dagger} \leftarrow \text { the best approx! }
\end{aligned}
$$

- $1 \leq i, j, k, l \leq D$
- $D_{\text {cut }}<D^{2}$
- $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{D^{2}} \geq 0$
${ }^{2}$ The Frobenius norm of the difference between the original and the approximated matrices is minimized.

Coarse-graining of the tensor network

Eckart-Young theorem [Eckart and Young 1936] States that the SVD is the best low rank approximation of a matrix.

$$
T_{i j k l}=M_{(j k)(l i)} \approx \sum_{m=1}^{D_{\text {cut }}} U_{(j k) m} \sigma_{m} V_{m(l i)}^{\dagger}
$$

Coarse-graining of the tensor network

Eckart-Young theorem [Eckart and Young 1936] States that the SVD is the best low rank approximation of a matrix.

Coarse-graining of the tensor network

Eckart-Young theorem [Eckart and Young 1936] States that the SVD is the best low rank approximation of a matrix.

Coarse-graining of the tensor network

Eckart-Young theorem [Eckart and Young 1936] States that the SVD is the best low rank approximation of a matrix.

Coarse-graining of the tensor network

Eckart-Young theorem [Eckart and Young 1936] States that the SVD is the best low rank approximation of a matrix.

■ \# of lattice sites is reduced by $1 / 2$ through a single cycle.
\square TN is uniform. \Rightarrow One needs to just repeat local procedures.
■ Total cost $\propto \log _{2}$ (Vol.).

- left) particle number density, right) expectation value of squared absolute value of field
■ $m^{2}=0.01, \lambda=1, K^{2}=4096, D=64$.

Average of phase factor $\left\langle e^{i \theta}\right\rangle$

- $Z_{\mathrm{pq}}=\int \mathcal{D} \phi_{1} \mathcal{D} \phi_{2} e^{-\operatorname{Re}(S)}$.

■ $m^{2}=0.01, \lambda=1, K^{2}=4096, D=64, V=8 \times 128$.
■ In the large μ region, the ratio deviates from 1 , and the sign problem is severe.

naive TRG vs. sign problem free formulation of Z

Using

- polar coordinate expression: $\phi_{n}=\left(\phi_{n, 1}, \phi_{n, 2}\right) \rightarrow\left(r_{n} \cos \theta_{n}, r_{n} \sin \theta_{n}\right)$,

■ character expansion: $e^{x \cos z}=\sum_{l=-\infty}^{\infty} l_{l}(x) e^{i l z}$ for $x \in \mathbb{R}, z \in \mathbb{C}$,
Z can be expressed in a sign problem free version:
$Z=\left(\prod_{n} \sum_{I_{n, 1}, l_{n, 2}=-\infty}^{\infty}\right)\left(\prod_{n} \int_{0}^{\infty} \mathrm{d} r_{n}\right) \prod_{n} 2 \pi r_{n} \prod_{\nu=1}^{2} e^{-\frac{1}{4}\left(4+m^{2}\right)\left(r_{n}^{2}+r_{n+\nu}^{2}\right)-\frac{\lambda}{4}\left(r_{n}^{4}+r_{n+\nu}^{4}\right)}$

$$
\cdot I_{I_{n, \nu}}\left(2 r_{n} r_{n+\hat{\nu}}\right) e^{I_{n, \nu} \mu \delta_{\nu, 2}} \delta_{\left(I_{n, 1}+I_{n, 2}-I_{n-\hat{1}, 1}-I_{n-\hat{2}, 2}\right), 0}
$$

- l_{1} : modified Bessel function of first kind (non-negative)
- [Endres 2007] (cf. loop formulation, world line representation).

■ Efficient MC evaluation using worm algorithm [Orasch and Gattringer 2018]
naive TRG vs. sign problem free formulation of Z

- left) naive TRG and Endres's form w/TRG, $V=8 \times 128$. right) Endres's form w/worm, $V=10 \times 100$ (adapted from [Orasch and Gattringer 2018]).
■ $m^{2}=0.01, \lambda=1$.
■ $D=64$, truncation order of $C E=128$ (in left panel).
■ Good agreement in the large μ region (severe sign problem region)

Summary and outlook

- TN formulation of the 2D complex ϕ^{4} theory
- Silver Blaze phenomenon is observed

■ Result by naive TRG is consistent with those of sign problem free formulation

In future
■ Phase diagram

- Properties of Silver Blaze transition

■ Complicated models (e.g. SUSY and chiral gauge theories)

- 2D $\mathcal{N}=1$ WZ model [Kadoh, Kuramashi, Nakamura, RS, Takeda, Yoshimura 2018]
- 3D will be reasonable in the viewpoint of both accuracy and computational complexity
- 4D application is still limited to Ising model [Akiyama et al. 2019] (but hopeful result!)
[1] G. Aarts, "Complex Langevin dynamics at finite chemical potential: Mean field analysis in the relativistic Bose gas", JHEP 05, 052, arXiv:0902.4686 [hep-lat].
[2] S. Akiyama, Y. Kuramashi, T. Yamashita, and Y. Yoshimura, "Phase transition of four-dimensional Ising model with higher-order tensor renormalization group", arXiv:1906.06060 [hep-lat].
[3] C. Eckart and G. Young, "The approximation of one matrix by another of lower rank", Psychometrika 1, 211 (1936).
[4] M. G. Endres, "Method for simulating $O(N)$ lattice models at finite density", Phys. Rev. D75, 065012 , arXiv:hep-lat/0610029 [hep-lat].
[5] C. Gattringer and T. Kloiber, "Lattice study of the Silver Blaze phenomenon for a charged scalar ϕ^{4} field", Nucl. Phys. B869, 56, arXiv:1206.2954 [hep-lat].
[6] H. Kawauchi and S. Takeda, "Tensor renormalization group analysis of CP ($N-1$) model", Phys. Rev. D93, 114503, arXiv:1603.09455 [hep-lat].
[7] M. Levin and C. P. Nave, "Tensor renormalization group approach to 2D classical lattice models", Phys. Rev. Lett. 99, 120601, arXiv:cond-mat/0611687 [cond-mat.stat-mech].
[8] Y. Liu, Y. Meurice, M. P. Qin, J. Unmuth-Yockey, T. Xiang, Z. Y. Xie, J. F. Yu, and H. Zou, "Exact blocking formulas for spin and gauge models", Phys. Rev. D88, 056005, arXiv:1307.6543 [hep-lat].
[9] O. Orasch and C. Gattringer, "Canonical simulations with worldlines: An exploratory study in ϕ_{2}^{4} lattice field theory", Int. J. Mod. Phys. A33, 1850010, arXiv:1708. 02817 [hep-lat].
[10] S. Takeda and Y. Yoshimura, "Grassmann tensor renormalization group for the one-flavor lattice Gross-Neveu model with finite chemical potential", Prog. Theor. Exp. Phys. 2015, 043B01, arXiv:1412.7855
[hep-lat].

