
Current status and perspectives 
of complex Langevin calculations 

in finite density QCD
Invited talk at XQCD2019

Bunkyo school building, University of Tsukuba,

Tokyo, Japan, Jun. 24, 2019

Jun Nishimura (KEK & SOKENDAI)

Ref.) Nagata, J.N., Shimasaki, Phys.Rev. D94 (2016) no.11, 114515, arXiv:1606.07627 [hep-lat]
Tsutsui, Ito, Matsufuru, J.N., Shimasaki, Tsuchiya, PoS LATTICE2018 (2018) 144, 

arXiv:1811.07647 [hep-lat]                      
Ito, Matsufuru, J.N., Shimasaki, Tsuchiya, Tsutsui, PoS LATTICE2018 (2018) 146,

arXiv:1811.12688 [hep-lat]                                                                                      



QCD phase diagram at finite T and 

First principle calculations are difficult due to the sign problem

chemical  potential
for the baryon 
number density

temperature



The sign problem in Monte Carlo methods

• At finite baryon number density (             ),

The fermion determinant becomes complex in general.

Generate configurations U with the probability
and calculate                     

(reweighting)

become exponentially small as the volume increases
due to violent fluctuations of the phase 

Number of configurations needed to evaluate <O> increases exponentially. 

“sign problem”



A new development toward 
solution to the sign problem

Key : complexification of dynamical variables

Minimize the sign problem by
deforming the integration contour

An equivalent stochastic process
of the complexified variables
(no sign problem !)

2011～

The original path integral

The phase of 
oscillates violently
(sign problem)

“Lefschetz thimble approach”

“complex Langevin method”

The equivalence to the original path integral
holds only under certain conditions.

This talk



The current status and perspectives of the complex 
Langevin calculations in finite density QCD

Unfortunately, there is still a lot of skepticism in this method 
due to the “wrong convergence problem”.

Now we have an explicit criterion which tells us 
whether the obtained results are correct or not.

I will discuss the parameter region of finite density QCD,
in which the criterion is satisfied. 

I will show explicit results, which reveal highly nontrivial 
properties in the high density region. 

However, 

I will discuss what we can do in the near future.



Plan of the talk

1. Complex Langevin method

2. Argument for justification and 
the condition for correct convergence

3. Application to lattice QCD at finite density

3.1   Can we see the deconfining transition?
3.2   Studies of the low-T high density region

4.  Summary and future prospects



1．Complex Langevin method



Parisi-Wu (’81)
Damgaard-Huffel (’87)

Langevin eq.
Gaussian noise

View this as the stationary distribution of a stochastic process.

Fokker-Planck eq.

“drift term”

Proof

The real Langevin method



Rem 2 :   The drift term                                   and the observables

The complex Langevin method
Parisi (’83), Klauder (’83)

complex

Complexify the dynamical variables, and consider their 
(fictitious) time evolution :

defined by the complex Langevin equation

Gaussian noise (real)

should be evaluated for complexified variables by analytic continuation.

?

Rem 1 :   When w(x) is real positive, it reduces to the real Langevin method.



2. Argument for justification and the 
condition for correct convergence

Ref.) Nagata-J.N.-Shimasaki, 
Phys.Rev. D94 (2016) no.11, 114515, arXiv:1606.07627 [hep-lat]



The key identity for justification

Fokker-Planck eq.

c.f.) J.N.-Shimasaki, PRD 92 (2015) 1, 011501 arXiv:1504.08359 [hep-lat]

This is OK provided that eq.(#) holds and P(t=∞) is unique.

?
・・・・・・(#)

?



Condition for justifying the CLM

Refinement of this argument led to the criterion:
the probability of the drift term should be suppressed 
exponentially at large magnitude.

Note:
➢ This provides a clear and practical criterion for correct convergence.
➢ No additional cost needed. (Drift term has to be calculated anyway !)
➢ In the case of real Langevin simulation, this criterion need not be satisfied. 

Nagata-J.N.-Shimasaki, Phys.Rev. D94 (2016) no.11, 114515, 
arXiv: 1606.07627 [hep-lat]

?
・・・・・・(#)

Aarts, James, Seiler, Stamatescu: Eur. Phys. J. C (’11) 71, 1756

Proof of this identity was discussed for the first time in



Demonstration of our condition

The probability distribution of the magnitude of the drift term

semi-log plot log-log plot

power-law fall off



3. Application to lattice QCD at finite 
density



Rem.) The fermion determinant gives rise to a drift 

1) link variables become far from unitary (excursion problem)

2) has eigenvalues close to zero (singular drift problem)

complex Langevin method for finite densiy QCD

The drift term can become large when :

Complexification of dynamical variables : 

Discretized version of complex Langevin eq.

“gauge cooling”

generators of SU(3)

complex !

Seiler-Sexty-Stamatescu, PLB 723 (2013) 213
Nagata-J.N.-Shimasaki, Phys.Rev. D94 (2016) no.11, 114515

J.N.-Shimasaki, Phys.Rev. D92 (2015) no.1, 011501
Mollgaard-Splittorff, Phys.Rev. D88 (2013) no.11, 116007



3.1    Can we see the deconfining transition ?

Ref.) Tsutsui, Ito, Matsufuru, J.N., Shimasaki, Tsuchiya, PoS LATTICE2018 (2018) 144, 
arXiv:1811.07647 [hep-lat]



Simulation setup

Tsutsui, Ito, Matsufuru, J.N., Shimasaki, Tsuchiya, PoS LATTICE2018 (2018) 144, 
arXiv:1811.07647 [hep-lat] 

Earlier attempts by Z. Fodor, S.D. Katz, D. Sexty, C. Török, Phys.Rev. D92 (2015) no.9, 094516

Nt = 8, CL simulation becomes unstable at β < 5.2.



Singular-drift problem seems to occur in the confined phase in general.

baryon number density Polyakov loop



the generalized Banks-Casher relation
Splittorff, Phys.Rev. D91 (2015) no.3, 034507, arXiv:1412.0502 [hep-lat] 
Nagata-J.N.-Shimasaki, JHEP 1607 (2016) 073, arXiv:1604.07717 [hep-lat]
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Distribution depends on how one applies the gauge cooling,
but the quantity on the r.h.s. is universal.

chiral condensate

Result for chiral Random Matrix Theory



Our claim based on simulation results

⚫ Singular-drift problem occurs in general in the confined phase,
where the chiral condensate becomes non-zero. 
(assuming light quarks and large volume)

⚫ This conclusion is understandable from the viewpoint of 
the generalized Banks-Casher relation.

⚫ One can actually investigate the high density region 
in which the chiral condensate vanishes!

(One has to use sufficiently large β in order to
avoid the excursion problem, though.)

⚫ The “confined” phase can be investigated 
by using small spatial volume, which causes a gap 
in the eigenvalue distribution of the Dirac op.  (next section.)

c.f.) poster presentation by S. Tsutsui, this evening



3.2    Studies of the low-T high density 
region

Ref.) Ito, Matsufuru, J.N., Shimasaki, Tsuchiya, Tsutsui, PoS LATTICE2018 (2018) 146,
arXiv:1811.12688 [hep-lat] 



Simulation setup

Note : the spatial extent of our lattice :   0.045fm × 8 =  0.36 fm

Ito, Matsufuru, J.N., Shimasaki, Tsuchiya, Tsutsui, PoS LATTICE2018 (2018) 146,
arXiv:1811.12688 [hep-lat] 

c.f.) previous study on a 43 ×8 lattice 
Nagata, JN, Shimasaki, Phys.Rev. D98 (2018) no.11, 114513, arXiv:1805.03964 [hep-lat]
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We always have a gap due to finite spatial volume effects, but still
the singular-drift problem occurs at
possibly due to large fluctuation associated with the phase transition.
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PQ

⚫ A clear plateau behavior is observed.
(formation of 8 baryons)

a low-T-like behavior (T ～270MeV)

⚫ Polyakov loop is small at the plateau.
(“confined” phase due to
finite spatial volume effects)

⚫ Phase-quenched model exhibits 
another plateau at smaller mu.

(formation of 4 mesons)
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=5.7, m=0.01

CLM
PQ

Polyakov loop

⚫ A clear plateau behavior is observed.
(formation of 8 baryons)

a low-T-like behavior (T ～270MeV)

⚫ Polyakov loop is small at the plateau.
(“confined” phase due to
finite spatial volume effects)

⚫ Phase-quenched model exhibits 
another plateau at smaller mu.

(formation of 4 mesons)



New results for a                 lattice
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quark number Polyakov loop

chiral condensate
⚫ The plateau region shifts to smaller μ.

(less energy needed to create baryons)

⚫ The height of the plateau remains to be 
24 quarks (formation of 8 baryons)

⚫ It may remain the same until we reach
the nuclear density 0.17 fm-3.
(Ls=80 required to reach that point !)

presented by S. Tsutsui at LATTICE2019



4.  Summary and future prospects



Summary and future prospects

⚫ The complex Langevin method is a powerful tool
to investigate interesting systems with complex action.

➢ The argument for justification was refined, 
and the condition for correct convergence was obtained.

⚫ The validity region of CLM in finite density QCD

➢ The singular-drift problem occurs in general in the confined phase.
➢ One can investigate the high density region in which the chiral condensate vanishes.
➢ The “confined” phase can be studied on lattices with small spatial extent.

The plateau corresponding to 8 baryons observed on 83×16, 163×32 lattices.

⚫ Future directions

➢ Larger lattice (important because we use large β to suppress the excursion problem)
➢ (Indirect) determination of the phase boundary
➢ Investigations  of the quark matter using larger β

(Can we see the color superconducting phase ?)
➢ Extending these studies to 2 quark flavors using Wilson fermions



Backup slides



physical interpretation of 
the phase quenched model

“up” quark “down” quark

full QCD :

phase quenched model :



Speculated behaviors at T=0 
with large spatial volume

full QCD

phase quenched
model

transition to
quark matter

space filled
with nucleons

“Silver Blaze” region


