Extracting equation of state from neutron star observation using machine learning

Yuki Fujimoto¹, Kenji Fukushima^{1,2}, and Koichi Murase³

¹Department of Physics, The University of Tokyo, ²Institute for Physics of Intelligence (IPI), The University of Tokyo, ³Department of Physics, Sophia University

References: [1] **YF**, K. Fukushima & K. Murase, Phys. Rev. D **98**, 023019 (2018); [2] **YF**, K. Fukushima & K. Murase, arXiv:1903.03400 [nucl-th].

1. Introduction: dense matter equation of state (EoS) Equation of State (EoS): static relation between pressure p and density ρ The current status of the EoS: At lower density Nuclear calculation, well-constrained around ρ₀

We extract this lacking information of the EoS from neutron star observables using machine learning

2. Neutron star phenomenology

▶ TOV equation connects EoS and neutron star observables:

Observables:

X-ray measurement of neutron star masses and radii

▶ 14 of them are distributed on the website

Using the one-to-one mapping between M-R and EoS, estimate the EoS from the real observables

3. Machine learning method for EoS estimation

In reality, however, above one-to-one correspondence is not exact because the M-R is not curve anymore:

▶ To get "EoS predictor," express this mapping in terms of deep neural network

1 Prepare training data (input and answer)

3 Fit neural network parameters to minimize the error

Use bootstrapping method for uncertainty estimation

4. Mock data analysis

▶ EoS reconstruction accuracy: typical examples

▶ Reconstruction accuracy in M-R space

Mass (M_{\odot})	0.6	8.0	1.0	1.2	1.4	1.6	1.8	M
σ _R (km)	0.16	0.12	0.10	0.099	0.11	0.11	0.12	1.4
$\sigma_{\rm p} = {\sf RMS}[\delta R(M)]$								' <i>M</i> *

Reconstruction accuracy: ~0.1 km surpassing the current observational uncertainties!

5. Results and discussion

Inferred result

 $\delta R(M_*)$

Sound velocity

Sound velocity: $c_s^2 = \frac{\partial p}{\partial \rho}$

▶ Upper limit for ultra-relativistic particle:

- Consistency check with independent result
 - ▶ Chiral effective theory: shown above in grey region, consistent Hebeler et al. (2013)
- ▶ Nuclear theory: EoS based on realistic potential such as APR, consistent
- ▶ Quark-hadron continuity: three-window EoS (QHC19), consistent Baym et al. (2019)
- ▶ GW170817: calculated tidal deformability with our result, consistent

$$\Lambda_{\rm ours}(1.4\,M_{\odot}) = 320^{+120}_{-110}, \quad \Lambda_{\rm GW170817}(1.4\,M_{\odot}) = 190^{+390}_{-120} \quad \text{Annala et al. (2017)}$$
 Abbott et al. (2018)

▶ Relation with Bayesian inference of EoS

We want to find Ψ_{TOV}^{-1} such that $\theta = \Psi_{\text{TOV}}^{-1}(\mathcal{D})$ (θ : EoS parameter, \mathcal{D} : observation)

▶ Bayesian (e.g. Maximum a posterior estimator)

 $\Psi_{\text{MAP}}^{-1} = \operatorname{argmax}_{\boldsymbol{\theta}} \Pr(\boldsymbol{\theta} \mid \mathcal{D}) = \operatorname{argmax}_{\boldsymbol{\theta}} \Pr(\boldsymbol{\theta}) \Pr(\mathcal{D} \mid \boldsymbol{\theta})$

approximated estimate of loss function → Bayesian

6. Conclusions and future prospects

Conclusions

- ▶ We established the method to estimate EoS using machine learning
- ▶ Put significant constraint on EoS based the real neutron star observations
- Result seems to be consistent with independent study

Future prospects

- ▶ Rigorous treatment of the uncertainty; bootstrapping is known to be optimistic
- Study the bias effect of other contributions