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 1. Introduction: dense matter equation of state (EoS)
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‣ Equation of State (EoS): static relation between pressure    and densityp ρ

Pressure

Density

p

ρ
∼ ρ0 ∼ 10 ρ0 ∼ 100 ρ0

Nuclear 
matter

pQCD

ρ0 ~ 0.16 fm-3; 
normal nuclear density

‣ The current status of the EoS:

Özel et al. (2016)

‣ At lower density Nuclear calculation, well-constrained around ρ0  
… but reliability above ρ0 decline with growing density

‣ At higher density Perturbative QCD calculation is feasible 
… but plagued with large uncertainty

We extract this lacking information of the EoS  
from neutron star observables using machine learning

 2. Neutron star phenomenology

 3. Machine learning method for EoS estimation

 4. Mock data analysis
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 6. Conclusions and future prospects

‣ We established the method to estimate EoS using machine learning 
‣ Put significant constraint on EoS based the real neutron star observations 
‣ Result seems to be consistent with independent study

‣ Inferred result

‣ Sound velocity

‣ Consistency check with independent result

‣ Relation with Bayesian inference of EoS

‣ Rigorous treatment of the uncertainty; bootstrapping is known to be optimistic 
‣ Study the bias effect of other contributions

Conclusions

Future prospects

‣ Reconstruction accuracy in M-R space

Mass (     ) 0.6 0.8 1.0 1.2 1.4 1.6 1.8

σR (km) 0.16 0.12 0.10 0.099 0.11 0.11 0.12

M⊙

‣ TOV equation connects EoS and neutron star observables:

‣ Observables: 
X-ray measurement of neutron star masses and radii  

‣ 14 of them are distributed on the website
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‣ EoS reconstruction accuracy: typical examples

If M-R curve is given, there is one-to-one correspondence Lindblom (1992)
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Tolman-Oppenheimer-Volkoff (TOV) equation
pressure dp

gravity
drGeneral relativistic equation for hydrostatic equilibrium

EoS Observables:

σR = RMS[δR(M)]

‣ Reconstruction accuracy: ~0.1 km 
surpassing the current observational uncertainties!

‣ In reality, however, above one-to-one correspondence is not exact  
because the M-R is not curve anymore:

Using the one-to-one mapping between M-R and EoS,  
estimate the EoS from the real observables

‣ To get “EoS predictor,” express this mapping in terms of deep neural network

‣ Use bootstrapping method for uncertainty estimation

finding this  
becomes nontrivial task
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‣ Bayesian (e.g. Maximum a posterior estimator)

‣ Neural network

‣ Chiral effective theory: shown above in grey region, consistent 
‣ Nuclear theory: EoS based on realistic potential such as APR, consistent 
‣ Quark-hadron continuity: three-window EoS (QHC19), consistent 
‣ GW170817: calculated tidal deformability with our result, consistent

Λours(1.4 M⊙) = 320+120
−110, ΛGW170817(1.4 M⊙) = 190+390
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Mass-radius input

training data: input training data: 
answer
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① Prepare training data (input and answer)

③ Fit neural network parameters to minimize the error 

We want to find          such thatΨ−1
TOV θ = Ψ−1

TOV(𝒟) (θ: EoS parameter, 𝒟: observation)

Ψ−1
MAP = argmaxθ Pr(θ |𝒟) = argmaxθ Pr(θ)Pr(𝒟 |θ)

⟨ℓ[Ψ−1]⟩ = ∫ dθd𝒟 Pr(θ)Pr(𝒟 |θ)ℓ(θ, Ψ−1(𝒟))find       through minimizing:Ψ−1

approximated estimate of loss function → Bayesian 

‣ Sound velocity:  

‣ Upper limit for ultra-relativistic particle: 
 

‣ Sound velocity exceeds conformal limit!

c2
s =

∂p
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c2
s = 1/3 (Conformal limit)
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