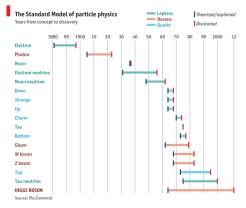
Limits on the Charged Higgs Parameters in the Two Higgs Doublet Model using CMS $\sqrt{s} = 13$ TeV Results

Prasenjit Sanyal

Department of Physics Indian Institute of Technology Kanpur



Standard Model of Particle Physics

• The Standard Model (SM) is the most successful model in explaining the fundamental particles of the Universe and their interactions.

Particle Content of SM

Timeline of Discovery

< 口 > < 合型

Overview of Two Higgs Doublet Model (2HDM)

Scalar Potential:

$$\begin{split} \mathcal{V}(\Phi_{1},\Phi_{2}) &= m_{11}^{2}\Phi_{1}^{\dagger}\Phi_{1} + m_{22}^{2}\Phi_{2}^{\dagger}\Phi_{2} - [m_{12}^{2}\Phi_{1}^{\dagger}\Phi_{2} + h.c.] + \frac{1}{2}\lambda_{1}(\Phi_{1}^{\dagger}\Phi_{1})^{2} \\ &+ \frac{1}{2}\lambda_{2}(\Phi_{2}^{\dagger}\Phi_{2})^{2} + \lambda_{3}(\Phi_{1}^{\dagger}\Phi_{1})(\Phi_{2}^{\dagger}\Phi_{2}) + \lambda_{4}(\Phi_{1}^{\dagger}\Phi_{2})(\Phi_{2}^{\dagger}\Phi_{1}) \\ &+ [\frac{\lambda_{5}}{2}(\Phi_{1}^{\dagger}\Phi_{2})^{2} + h.c.] \end{split}$$

where

$$\Phi_i = \left(\begin{array}{c} \phi_i^+ \\ \frac{\nu_i + \rho_i + i\eta_i}{\sqrt{2}} \end{array}\right)$$

 $\langle \Phi_1 \rangle = v_1$, $\langle \Phi_2 \rangle = v_2$, tan $\beta = v_2/v_1$ and $v = \sqrt{v_1^2 + v_2^2} \sim 246$ GeV.

• The physical mass eigenstates are given by

$$\begin{pmatrix} \mathbf{G}^{\pm} \\ \mathbf{H}^{\pm} \end{pmatrix} = \mathbf{R}(\beta) \begin{pmatrix} \phi_{1}^{\pm} \\ \phi_{2}^{\pm} \end{pmatrix}, \begin{pmatrix} \mathbf{G} \\ \mathbf{A} \end{pmatrix} = \mathbf{R}(\beta) \begin{pmatrix} \eta_{1} \\ \eta_{2} \end{pmatrix}, \begin{pmatrix} \mathbf{H} \\ \mathbf{h} \end{pmatrix} = \mathbf{R}(\alpha) \begin{pmatrix} \rho_{1} \\ \rho_{2} \end{pmatrix}$$

where

$$R(\theta) = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$$

Yukawa Sector:

Model	Φ1	Φ2	U _R	d _R	l _R	Q_L, L_L
Type I	+	—	_	—	-	+
Typell	+	—	-	+	+	+
Туре Х	+	—	_	—	+	+
Type Y	+	—	—	+	—	+

$$\mathcal{L}_{\text{Yukawa}}^{\text{2HDM}} = -\bar{Q}_L Y_u \tilde{\Phi}_u u_R - \bar{Q}_L Y_d \Phi_d d_R - \bar{L} Y_l \Phi_l l_R + h.c.$$

where $\Phi_{I}(f = u, d \text{ or } I)$ is either Φ_{1} or Φ_{2} depending on the Yukawa models of 2HDM.

• The Yukawa interactions of H^{\pm} with quarks and leptons take the form

$$\mathcal{L}_{\text{Yukawa}}^{H^{\pm}} = -\frac{\sqrt{2}}{v}H^{+}\bar{u}[\xi_{d}VM_{d}P_{R}-\xi_{u}M_{u}VP_{L}]d - \frac{\sqrt{2}}{v}H^{+}\xi_{l}\bar{\nu}M_{l}P_{R}I + h.c.$$

₹ E ► < E ► E = E =

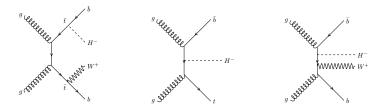
4/21

Model	ξd	ξu	ξı
Type I	$\cot eta$	$\cot \beta$	$\cot eta$
Typell	- aneta	$\cot \beta$	- aneta
Type X	$\cot eta$	$\cot \beta$	- aneta
Type Y	- aneta	$\cot\beta$	$\cot \beta$

Choice of parameter space:

$$\{m_{11}^2, m_{22}^2, m_{12}^2, \lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5\}$$

$$\downarrow$$


$$\{M_h^2, M_H^2, M_A^2, M_{H^{\pm}}^2, m_{12}^2, \mathbf{v}, \tan\beta, \sin(\beta - \alpha)\}$$

 Alignment limit: sin(β − α) → 1 which implies h behaves as SM-Higgs boson (most favoured).

▶ ▲ 문 ▶ ▲ 문 ▶ ... 문 ...

H^{\pm} Production Modes

• The production cross section of charged Higgs depends on its mass with respect to top quark. Also $\sigma_{\text{Type I}}^{H^{\pm}} = \sigma_{\text{Type X}}^{H^{\pm}}$, $\sigma_{\text{Type II}}^{H^{\pm}} = \sigma_{\text{Type Y}}^{H^{\pm}}$ and $\sigma_{H^{\pm}} = \sigma_{H^{+}} + \sigma_{H^{-}}$. https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWGMSSMCharged

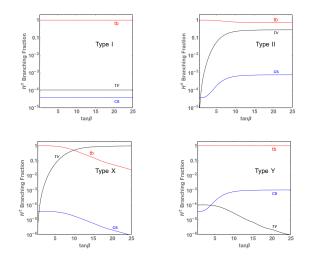
- Light Scenario: The double resonant (left diagram) top pair production is the dominant process for light H^{\pm} ($M_{H^{\pm}} \lesssim 150$ GeV).
- Heavy Scenario: The single resonant (middle diagram) top production is the dominant process for H^{\pm} production ($M_{H^{\pm}} \gtrsim 200$ GeV).
- Intermediate Scenario: Both of these channels, left and middle, along with the non-resonant top quark production (right diagram) are taken into account (*M_{H±}* ~ *M_t*).

|--|

H^{\pm} Decay Modes

• H^{\pm} decay to fermion-antifermion:

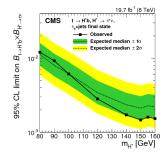
$$egin{array}{ccc} H^+ & \longrightarrow & car{s} \ H^+ & \longrightarrow & car{b} \ H^+ & \longrightarrow & tar{b} \ H^+ & \longrightarrow & tar{b} \end{array}$$

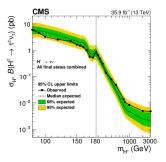

depends on types of Yukawa interaction and CKM matrix element

• H^{\pm} decay to gauge bosons:

$$egin{array}{cccc} H^+ & \longrightarrow & W^+\gamma & & ext{loop} \ H^+ & \longrightarrow & W^+Z & & ext{suppressed} \end{array}$$

• H^{\pm} decay to neutral bosons:

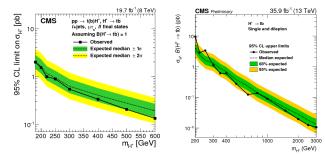

H[±] Decay Modes


 H[±] branching ratio for M_{H±} = 250 GeV. Alignment limit ie. sin(β – α) = 1 and minimal mass splitting of M_{H±}, M_H and M_A are considered. P. Sanyal, Eur.Phys.J. C79 (2019) no.11, 913

э

CMS 8TeV and 13 TeV results ($\tau \nu$ channel)

Expected and observed 95% CL model independent upper limits on $\mathcal{BR}(t \to H^+ b) \mathcal{BR}(H^+ \to \tau^+ \nu)$ for $\sqrt{s} = 8$ TeV at a luminosity of 19.5 fb $^{-1}$ in the τ_{B^+} jets final states.JHEP 11(2015) 018,[1508.07774]



Expected and observed 95% CL model independent upper limits on $\sigma_{H\pm} B \mathcal{R}(H^{\pm} \rightarrow \tau^{\pm} \nu)$ for $\sqrt{s} =$ 13 TeV at a luminosity of 35.9 fb⁻¹ with all final states combined. arXiv:1903.04560

э

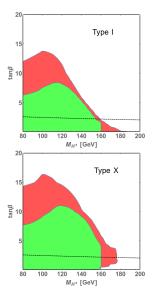
・ロト ・同ト ・ヨト ・ヨト

CMS 8TeV and 13 TeV results ($t\bar{b}$ channel)

Expected and observed 95% CL model independent upper limits on $\sigma_{H^{\pm}}$ assuming $\mathcal{BR}(H^+ \rightarrow t\bar{b}) = 1$ for $\sqrt{s} = 8$ TeV at a luminosity of 19.5 fb⁻¹ for the combination of $\mu \tau_h$, /+jets and ll' final states. JHEP 11(2015) 018,[1508.07774]

Expected and observed 95% CL model independent upper limits on $\sigma_{H^\pm} \mathcal{BR}(H^+ \to t \tilde{b})$ for $\sqrt{s} = 13$ TeV at a luminosity of 35.9 fb^{-1} for the combination of /+jets and l' final states. Available on the CERN CDS information server CMS PAS HIG-18-004

• □ ▶ • □ ▶ • □ ▶ • □ ▶


• *B* meson decays put strong constraints on $(M_{H^{\pm}} - \tan \beta)$ space.

Observable	Experiment	SM prediction
$BR(B \to X_s \gamma)$	$(3.32\pm0.15) imes10^{-4}$	$(3.34\pm0.22) imes10^{-4}$
$BR(B_s \to \mu^+ \mu^-)$	$(3.0\pm0.6\pm0.25) imes10^{-9}$	$(3.54\pm0.27) imes10^{-9}$

Weak radiative decays of the B meson and bounds on $M_{H^{\pm}}$ in the Two-Higgs-DoubletModel,Eur. Phys. J.C77 (2017) 201,[1702.04571]

- $B \rightarrow X_{s\gamma}$ rules out Type II and Type Y 2HDMs for $M_{H^{\pm}} \lesssim 580$ GeV independently of tan β .
- For $M_{H^{\pm}} \gtrsim 600$ GeV, in Type II and Type Y, $\mathcal{BR}(B_s \to \mu^+ \mu^-)$ puts stronger constraint than $\mathcal{BR}(B \to X_s \gamma)$.

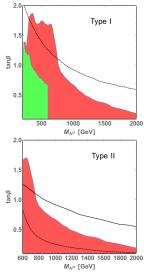
|→ □ → → 三 → → 三 → のへ(~

- For $M_{H^{\pm}} \in (80 160)$ GeV, the most important constraint comes from $H^{\pm} \rightarrow \tau^{\pm} \nu$ channel.
- Exclusion regions are shown in Type I and Type X 2HDMs.

Green Region	\longrightarrow	8TeV CMS results
Red Region	\longrightarrow	13TeV CMS results
Bellow Dashed line	\longrightarrow	$\mathcal{BR}(B \to X_s \gamma)$

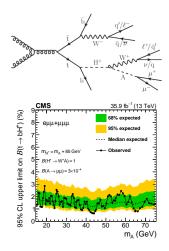
P. Sanyal, Eur.Phys.J. C79 (2019) no.11, 913

() + ()


Constraints on 2HDM Parameter Space (tb channel)

- For $M_{H^{\pm}} \gtrsim M_t$, the most important constraint comes from the $H^+ \rightarrow t\bar{b}$ channel.
- Exclusion regions are shown in Type I and Type II 2HDMs.

Green Region	\longrightarrow	8TeV CMS results
Red Region	\longrightarrow	13TeV CMS results
Bellow Dashed line	\longrightarrow	$\mathcal{BR}(B o X_s \gamma)$
Bellow Continuous line	\longrightarrow	${\cal BR}(B_s o \mu^+ \mu^-)$


• The Type X result is equivalent to Type I and Type Y result is equivalent to Type II.

P. Sanyal, Eur.Phys.J. C79 (2019) no.11, 913

∃ > < ∃ >

- The minimal mass splitting of H[±], H and A is prefered to satisfy the Electro Weak Precision Observables (EWPOs) S, T and U (specially T).
- Minimal mass splitting together with alignment limit restricts the exotic decay channels $H^{\pm} \rightarrow h/H/AW^{\pm}$.
- But once open, H[±] can dominantly decay to these channels.
- CMS collaboration put upper bounds on $\mathcal{BR}(t \to H^+ b)$ at 95% CL assuming $\mathcal{BR}(H^+ \to W^+ A) \to 1$ and $\mathcal{BR}(A \to \mu^+ \mu^-) \to 3 \times 10^{-4}$.
- Mass difference $(M_{H^{\pm}} M_A) = 85$ GeV with $M_{H^{\pm}} \in (100 160)$ GeV is considered by CMS group.
- EWPOs can still be satisfied in this mass range by proper choice of m²₁₂ and M_H ~ M_{H[±]}.

arxiv: 1905.07453

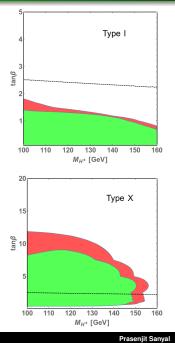
A B + A B +

Charged Higgs Exotic Decay $H^{\pm} ightarrow W^{\pm}A$

• In Type I scenario $\mathcal{BR}(H^{\pm} \to W^{\pm}A) \to 1$ is obtained for $\tan \beta \gtrsim 1$. Also $\mathcal{BR}(A \to \mu^{+}\mu^{-}) \sim 2.4 \times 10^{-4}$ for $M_{A} \in (15 - 75)$ GeV.

• Red region shows the excluded parameter space in Type I scenario.

P. Sanyal, Eur.Phys.J. C79 (2019) no.11, 913


- Unlike Type I where all the fermionic couplings of A is proportional to $\cot \beta$, in Type X the coupling of A to the leptons is proportional to $\tan \beta$ whereas its coupling to the quarks is proportional to $\cot \beta$. Thus the BR($A \rightarrow \mu^+\mu^-$) increases with $\tan \beta$.
- In Type X $\mathcal{BR}(A \to \mu^+ \mu^-) \to 3 \times 10^{-4}$ for tan $\beta \approx 1$ and BR $(t \to H^+ b)$ is above the CMS upper bound.
- Type II and Y are not considered as in this mass range they are ruled out by $B \rightarrow X_s \gamma$ constraint.

< 同 ト < 三 ト < 三 ト

Charged Higgs Exotic Decay $H^{\pm} \rightarrow W^{\pm}A$

IIT Kanpur

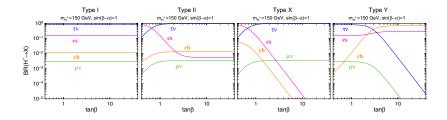
KEK-PH 2020

• Under the same CMS assumption of mass difference between H^{\pm} and A, ie. $(M_{H^{\pm}} - M_A) = 85$ GeV. The constraint from $\tau \nu$ channel will be less restrictive.

- Exclusion regions are shown in Type I and Type X 2HDMs.
 - $\begin{array}{rcl} \mbox{Green Region} & \longrightarrow & 8\mbox{TeV CMS results} \\ \mbox{Red Region} & \longrightarrow & 13\mbox{TeV CMS results} \\ \mbox{Bellow Dashed line} & \longrightarrow & \mathcal{BR}(B \to X_s \gamma) \end{array}$

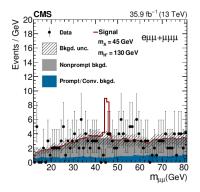
P. Sanyal, Eur.Phys.J. C79 (2019) no.11, 913

Japan

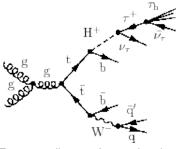

A B M A B M

- 2HDM is the simplest model containing charged Higgs.
- Two most dominant decay modes $H^{\pm} \rightarrow \tau^{\pm}\nu$ and $H^{+} \rightarrow t\bar{b}$ are studied using recent CMS 13 TeV results and compared with 8 TeV results.
- CMS collaboration for the first time studied the exotic channel, *H*[±] → *W*[±]*A*, *A* → μ⁺μ⁻ to put upper limits on *BR*(*t* → *H*[±]*b*). These results exclude significant parameter space not excluded by τν channel.
- Exclusion bounds from *B* meson decays are also compared for completeness.
- Comment: Latest results from collider experiments are excluding a large parameter space of 2HDMs, specially for charged Higgs mass lighter than top quark.

Thank You


3

★ E ► < E ► ...</p>



Branching ratios of H^{\pm} in four different models of 2HDM as a function of $\tan \beta$ for $M_{H^{\pm}} = 150$ GeV.

э

Invariant mass distribution of muon pair $m_{\mu\mu}$ produced from pseudoscalar decay *A*.

Feynman diagram for $\tau\nu$ signal

3

▶ < E ►