Generalization of Higgs Effective Field Theory

Yoshiki Uchida (Nagoya U.)

Phys. Rev. D 100, 075020

In collaboration with
Ryo Nagai (INFN, Padua)
Masaharu Tanabashi (Nagoya U.)
Koji Tsumura (Kyusyu U.)

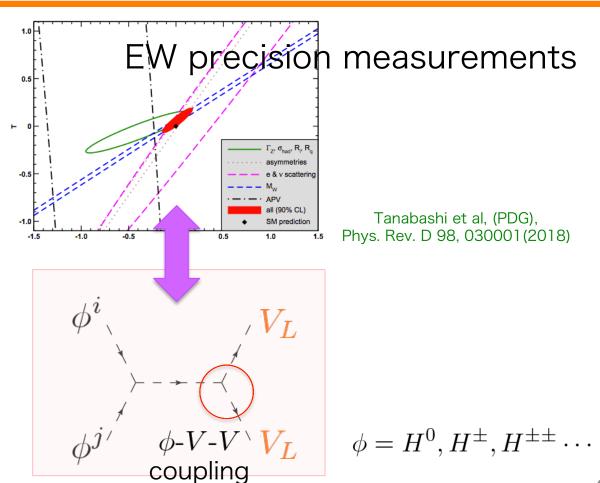
Make model-independent prediction about properties of H^0 , H^\pm , $H^{\pm\pm}$, ...

Make model-independent prediction about

properties of
$$H^0$$
, H^{\pm} , $H^{\pm\pm}$, ...

Make model-independent prediction about properties of H^0 , H^{\pm} , $H^{\pm\pm}$, ...

Results



Make model-independent prediction about properties of H^0 , H^\pm , $H^{\pm\pm}$, ...

Make *model-independent* prediction about properties of H^0 , H^{\pm} , $H^{\pm\pm}$, ...

EFT approach

should be applied!!

Make *model-independent* prediction about properties of H^0 , H^{\pm} , $H^{\pm\pm}$, ...

Existing EFT: heavy particles are integrated-out

We need to extend existing EFT ...

(Extension)

Generalization of Higgs Effective Field Theory

Yoshiki Uchida (Nagoya U.)

Phys. Rev. D 100, 075020

In collaboration with
Ryo Nagai (INFN, Padua)
Masaharu Tanabashi (Nagoya U.)
Koji Tsumura (Kyusyu U.)

(Extension)

Generalization of Higgs Effective Field Theory

Yoshiki Uchida (Nagoya U.)

Phys. Rev. D 100, 075020

What is Higgs Effective Field Theory?

$$\mathcal{L}_{\text{HEFT}} = \frac{v^2}{4} F(h) \text{Tr}[(D_{\mu} U)^{\dagger} D^{\mu} U] + \frac{1}{2} \partial_{\mu} h \partial^{\mu} h - V(h) + \cdots$$

$$F(h) = 1 + \kappa_1 \frac{h}{v} + \kappa_2 \left(\frac{h}{v}\right)^2 + \cdots \qquad U = \exp\left(\frac{i\pi^a \tau^a}{v}\right)$$

$$V(h) = m_h^2 h^2 + \lambda_3 h^3 + \cdots$$

- Symmetry : $SU(3)_C \times SU(2)_L \times U(1)_Y$
- · Matter contents : h , Z_{μ} , W_{μ}^{\pm} ...

$$\mathcal{L}_{\text{HEFT}} = \frac{v^2}{4} F(h) \text{Tr}[(D_{\mu} U)^{\dagger} D^{\mu} U] + \frac{1}{2} \partial_{\mu} h \partial^{\mu} h - V(h) + \cdots$$

$$F(h) = 1 + \kappa_1 \frac{h}{v} + \kappa_2 \left(\frac{h}{v}\right)^2 + \cdots \qquad U = \exp\left(\frac{i\pi^a \tau^a}{v}\right)$$

$$V(h) = m_h^2 h^2 + \lambda_3 h^3 + \cdots$$

- Symmetry: $SU(3)_C \times SU(2)_L \times U(1)_Y$
- · Matter contents : h , Z_{μ} , W_{μ}^{\pm} ··· classified under $U(1)_{
 m em}$

$$\mathcal{L}_{\text{HEFT}} = \frac{v^2}{4} F(h) \text{Tr}[(D_{\mu} U)^{\dagger} D^{\mu} U] + \frac{1}{2} \partial_{\mu} h \partial^{\mu} h - V(h) + \cdots$$

$$F(h) = 1 + \kappa_1 \frac{h}{v} + \kappa_2 \left(\frac{h}{v}\right)^2 + \cdots \qquad U = \exp\left(\frac{i\pi^a \tau^a}{v}\right)$$

$$V(h) = m_h^2 h^2 + \lambda_3 h^3 + \cdots$$

- Symmetry: $SU(3)_C \times SU(2)_L \times U(1)_Y$
- · Matter contents : h , Z_{μ} , W_{μ}^{\pm} ··· classified under $U(1)_{
 m em}$
 - cf.) SMEFT H , B_{μ} , W_{μ}^{a} ... classified under ${\it SU}(2)_{\it L} imes {\it U}(1)_{\it Y}$

$$\mathcal{L}_{\text{HEFT}} = \frac{v^2}{4} F(h) \text{Tr}[(D_{\mu} U)^{\dagger} D^{\mu} U] + \frac{1}{2} \partial_{\mu} h \partial^{\mu} h - V(h) + \cdots$$

$$F(h) = 1 + \kappa_1 \frac{h}{v} + \kappa_2 \left(\frac{h}{v}\right)^2 + \cdots \qquad U = \exp\left(\frac{i\pi^a \tau^a}{v}\right)$$

$$V(h) = m_h^2 h^2 + \lambda_3 h^3 + \cdots$$

- Symmetry: $SU(3)_C \times SU(2)_L \times U(1)_Y$
- · Matter contents : h , Z_{μ} , W_{μ}^{\pm} ··· classified under $U(1)_{
 m em}$

$$\mathcal{L}_{\text{HEFT}} = \frac{v^2}{4} F(h) \text{Tr}[(D_{\mu} U)^{\dagger} D^{\mu} U] + \frac{1}{2} \partial_{\mu} h \partial^{\mu} h - V(h) + \cdots$$

$$F(h) = 1 + \kappa_1 \frac{h}{v} + \kappa_2 \left(\frac{h}{v}\right)^2 + \cdots \qquad U = \exp\left(\frac{i\pi^a \tau^a}{v}\right)$$

$$V(h) = m_h^2 h^2 + \lambda_3 h^3 + \cdots$$

- Symmetry : $SU(3)_C \times SU(2)_L \times U(1)_Y$
- Matter contents : h , Z_{μ} , W_{μ}^{\pm} ··· classified under $U(1)_{\mathrm{em}}$

(HEFT)

$$\mathcal{L}_{\text{HEFT}} = \frac{v^2}{4} F(h) \text{Tr}[(D_{\mu} U)^{\dagger} D^{\mu} U] + \frac{1}{2} \partial_{\mu} h \partial^{\mu} h - V(h) + \cdots$$

$$F(h) = 1 + \kappa_1 \frac{h}{v} + \kappa_2 \left(\frac{h}{v}\right)^2 + \cdots \qquad U = \exp\left(\frac{i\pi^a \tau^a}{v}\right)$$

$$V(h) = m_h^2 h^2 + \lambda_3 h^3 + \cdots$$

· Symmetry :
$$SU(3)_C imes SU(2)_L imes U(1)_Y$$
 $m^2\pi^+\pi^ m'^2\pi^0\pi^0$

In our vacuum, $SU(2)_L \times U(1)_Y$ is realized as the shift symmetry of π^{\pm}, π^0 and forbid their mass terms

(HEFT)

$$\mathcal{L}_{\text{HEFT}} = \frac{v^2}{4} F(h) \text{Tr}[(D_{\mu} U)^{\dagger} D^{\mu} U] + \frac{1}{2} \partial_{\mu} h \partial^{\mu} h - V(h) + \cdots$$

$$F(h) = 1 + \kappa_1 \frac{h}{v} + \kappa_2 \left(\frac{h}{v}\right)^2 + \cdots \qquad U = \exp\left(\frac{i\pi^a \tau^a}{v}\right)$$

$$V(h) = m_h^2 h^2 + \lambda_3 h^3 + \cdots$$

• Symmetry: $SU(3)_C \times SU(2)_L \times U(1)_Y$

In the theory with SSB ($\mathcal{G}
ightarrow \mathcal{H}$)

 ${\mathcal G}$ is not really broken, but remains as non-linearly realized symmetry

From now on, we call generalized HEFT as "GHEFT"

• symmetry : $SU(3)_C \times SU(2)_L \times U(1)_Y$

· matter contents : SM + H^0 , H^{\pm} , $H^{\pm\pm}$, ...

From now on, we call generalized HEFT as "GHEFT"

• symmetry : $SU(3)_C \times SU(2)_L \times U(1)_Y$

non-linearly realized

• matter contents : SM + H^0 , H^\pm , $H^{\pm\pm}$, ... Non-trivial

Add H^0 , H^{\pm} , $H^{\pm\pm}$, \cdots respecting non-linearly realized $SU(2)_L \times U(1)_Y$

From now on, we call generalized HEFT as "GHEFT"

• symmetry : $SU(3)_C \times SU(2)_L \times U(1)_Y$

non-linearly realized

• matter contents : SM + H^0 , H^\pm , $H^{\pm\pm}$, ...

Add H^0 , H^{\pm} , $H^{\pm\pm}$, \cdots respecting non-linearly realized $SU(2)_L \times U(1)_Y$

CCWZ method

Coleman et. al., Phys. Rev. 177. 2239 Callan et. al., Phys. Rev. 177. 2247

We apply CCWZ to the extension of the HEFT!!

GHEFT

$$\mathcal{L}_{\text{GHEFT}} = \frac{1}{2} g_{ij}(\Phi) \partial_{\mu} \Phi^{i} \partial^{\mu} \Phi^{j} - V$$

$$\Phi^{i} = \{\pi^{a}, \phi^{I}\}$$

$$g_{1I} = G_{1I} + \frac{1}{2}G_{3I}\pi^2 - \frac{1}{6}G_{1I}\pi^2\pi^2 + \frac{1}{6}G_{2I}\pi^1\pi^2 + \mathcal{O}((\pi)^3),$$

$$g_{2I} = G_{2I} + \frac{1}{2}G_{3I}\pi^1 + \frac{1}{6}G_{1I}\pi^1\pi^2 - \frac{1}{6}G_{2I}\pi^1\pi^1 + \mathcal{O}((\pi)^3),$$

:

R. Nagai, M. Tanabashi, K. Tsumura, Y.U. Phys. Rev. D 100, 075020

Phenomenology

$$\mathcal{L}_{\text{GHEFT}} = \frac{1}{2} g_{ij}(\Phi) \partial_{\mu} \Phi^{i} \partial^{\mu} \Phi^{j} - V \quad \Phi^{i} = \{\pi^{a}, \phi^{I}\}$$

GHEFT has common property to HEFT ...

Nonrenormalizable

$$S_{\text{div}} = -\frac{1}{12\pi} \left(\epsilon_{3bc}(\bar{w}_c^k)(\bar{w}_3^l) \bar{R}^i{}_{jkl}(\bar{w}_b^j)_{;i} + \epsilon_{3bc}(\bar{w}_b^k)(\bar{w}_c^l) \bar{R}^i{}_{jkl}(\bar{y}^j)_{;i} \right) \ln \frac{\Lambda^2}{\mu^2}$$

Perturbative non-unitary

$$\begin{array}{c}
\phi^{i} \\
\downarrow \\
\phi^{j}
\end{array}
\begin{array}{c}
\phi^{k} \\
\sim \\
\phi^{l} \\
\stackrel{E}{>} \\
\downarrow \\
m_{\phi}
\end{array}
\begin{array}{c}
\frac{s}{3}(\bar{R}_{iklj} + \bar{R}_{ilkj}) + \frac{t}{3}(\bar{R}_{ijlk} + \bar{R}_{iljk}) + \frac{u}{3}(\bar{R}_{ijkl} + \bar{R}_{ikjl})
\end{array}$$

$$\mathcal{L}_{\text{GHEFT}} = \frac{1}{2} g_{ij}(\Phi) \partial_{\mu} \Phi^{i} \partial^{\mu} \Phi^{j} - V \quad \Phi^{i} = \{\pi^{a}, \phi^{I}\}$$

GHEFT has common property to HEFT ...

Nonrenormalizable

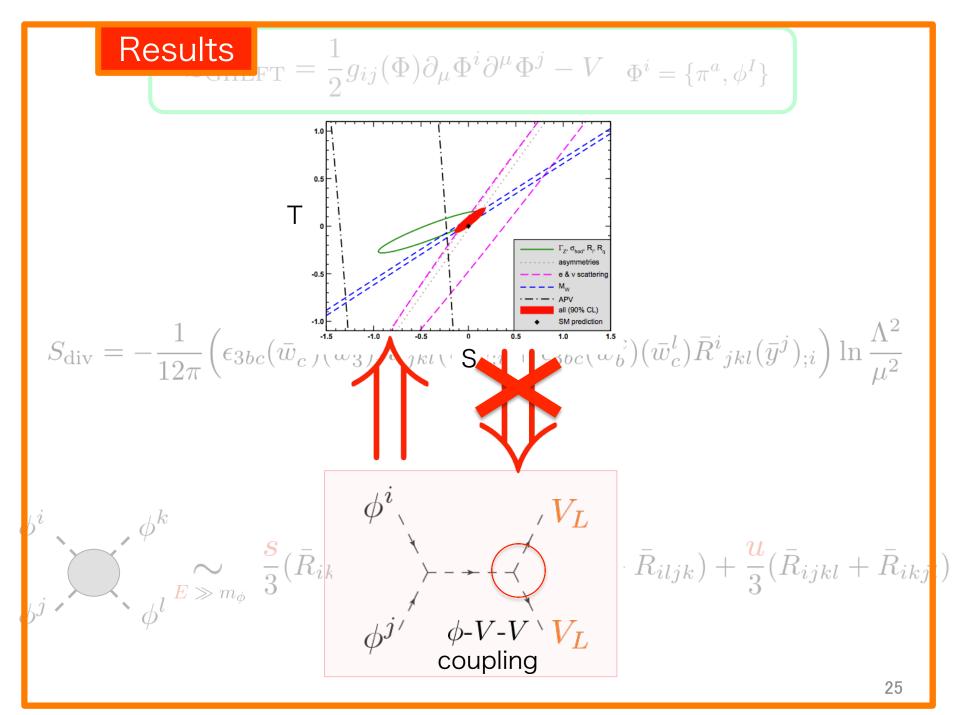
$$S_{\text{div}} = -\frac{1}{12\pi} \left(\epsilon_{3bc}(\bar{w}_c^k)(\bar{w}_3^l) \left(\bar{R}_{jkl}^i(\bar{w}_b^j)_{;i} + \epsilon_{3bc}(\bar{w}_b^k)(\bar{w}_c^l) \left(\bar{R}_{jkl}^i(\bar{y}^j)_{;i} \right) \ln \frac{\Lambda^2}{\mu^2} \right)$$

Perturbative non-unitary

$$\phi^{i} \longrightarrow \phi^{k} \longrightarrow \frac{s}{3}(\bar{R}_{iklj} + \bar{R}_{ilkj}) + \frac{t}{3}(\bar{R}_{ijlk} + \bar{R}_{iljk}) + \frac{u}{3}(\bar{R}_{ijkl} + \bar{R}_{ikjl})$$
Unitarity condition: $\bar{R}_{ijkl} = 0$

$$\mathcal{L}_{\text{GHEFT}} = \frac{1}{2} g_{ij}(\Phi) \partial_{\mu} \Phi^{i} \partial^{\mu} \Phi^{j} - V \quad \Phi^{i} = \{\pi^{a}, \phi^{I}\}$$

$$V_{\text{div}} = -\frac{1}{12\pi} \left(\epsilon_{3bc}(\bar{w}_{cJ}(\bar{w}_{3J^{1c}}, j_{Kl}(\bar{s}_{3J^{1c}}, j_{Kl}$$



Summary

Goal

Make model-independent prediction about properties of H^0 , H^{\pm} , $H^{\pm\pm}$, ...

- We formulate a generalization of HEFT (GHEFT) so that it includes additional scalar fields.
- GHEFT is invariant under nonlinear SU(2)xU(1) thanks to CCWZ method
- Take Home Message

Finiteness of S (i.e. $S_{
m div}=0$)

perturbative unitarity

(i.e.
$$ar{R}_{ijkl}=0$$
)

Back Up

Non-linearly realized sym.

Extension of HEFT

Mission

Add H^0 , H^\pm , $H^{\pm\pm}$, \cdots respecting non-linearly realized $SU(2)_L \times U(1)_Y$

CCWZ method

Coleman et. al., Phys. Rev. 177. 2239 Callan et. al., Phys. Rev. 177. 2247

Non-linearly realized $SU(2)_L \times U(1)_Y$

= $SU(2)_L \times U(1)_Y$ transformation depends on π^{\pm}, π^0

Ex.)
$$SU(2)_L$$
 : $H^{+\prime} = H^+ + \frac{\theta_L}{2\sqrt{2}}(\pi^- - \pi^+)H^+ + \cdots$

Extension of HEFT

Mission

Add H^0 , H^{\pm} , $H^{\pm\pm}$, \cdots respecting non-linearly realized $SU(2)_L \times U(1)_Y$

CCWZ method

Coleman et. al., Phys. Rev. 177. 2239 Callan et. al., Phys. Rev. 177. 2247

Non-linearly realized $SU(2)_L \times U(1)_Y$

= $SU(2)_L \times U(1)_Y$ transformation depends on π^{\pm}, π^0

Ex.)
$$SU(2)_L$$
: $H^{+\prime} = H^+ + \frac{\theta_L(x)}{2\sqrt{2}} (\pi_{(x)}^- - \pi_{(x)}^+) H^+ + \cdots$

Even if we take $\theta_L(x) \to \theta_L$

It still depends on x_{μ} through $\pi^{\pm}(x), \pi^{0}(x)$

Extension of HEFT

Mission

Add H^0 , H^{\pm} , $H^{\pm\pm}$, \cdots respecting non-linearly realized $SU(2)_L \times U(1)_Y$

CCWZ method

Coleman et. al., Phys. Rev. 177. 2239 Callan et. al., Phys. Rev. 177. 2247

Non-linearly realized $SU(2)_L \times U(1)_Y$

= $SU(2)_L \times U(1)_Y$ transformation depends on π^{\pm}, π^0

Ex.)
$$SU(2)_L$$
 : $H^{+\prime} = H^+ + \frac{\theta_L(x)}{2\sqrt{2}} (\pi^-_{(x)} - \pi^+_{(x)}) H^+ + \cdots$

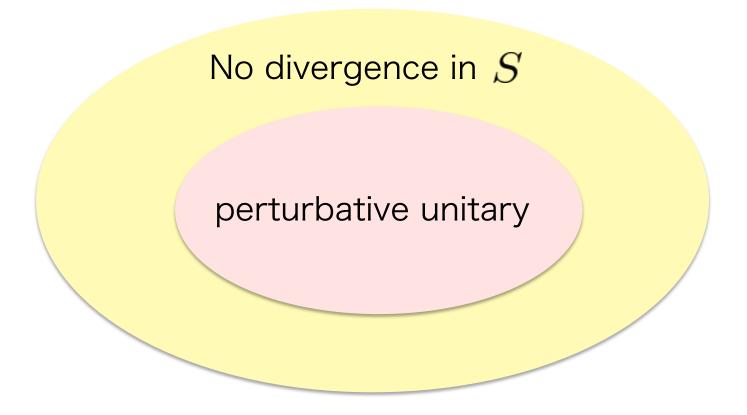
Even if we take $\theta_L(x) \to \theta_L$

It still depends on x_{μ} through $\pi^{\pm}(x), \pi^{0}(x)$

connection : W_{μ}, B_{μ}

connection : $\alpha_{\parallel\mu}$

Sufficient, not necessary



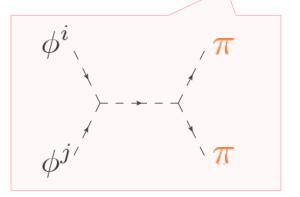
$$S_{\mathrm{div}} = -\frac{1}{12\pi} \left(\epsilon_{3bc} (\bar{w}_c^k) (\bar{w}_3^l) \bar{R}^i{}_{jkl} (\bar{w}_b^j)_{;i} + \epsilon_{3bc} (\bar{w}_b^k) (\bar{w}_c^l) \bar{R}^i{}_{jkl} (\bar{y}^j)_{;i} \right) \ln \frac{\Lambda^2}{\mu^2}$$

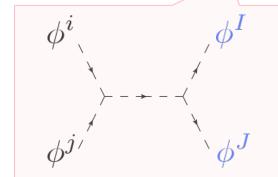
$$\bar{w}_a^i , \ \bar{y}^i : \text{Killing vector for } SU(2)_L , \ U(1)_Y$$

$$\sum_{k,l} \bar{w}^k \bar{w}^l \bar{R}^i{}_{jkl} = \bar{w}^\pi \bar{w}^\pi \bar{R}^i{}_{j\pi\pi} + \bar{w}^{\phi^I} \bar{w}^{\phi^J} \bar{R}^i{}_{j\phi^I\phi^J}$$

$$S_{\rm div} = -\frac{1}{12\pi} \Big(\epsilon_{3bc} (\bar{w}_c^k) (\bar{w}_3^l) \bar{R}^i{}_{jkl} (\bar{w}_b^j)_{;i} + \epsilon_{3bc} (\bar{w}_b^k) (\bar{w}_c^l) \bar{R}^i{}_{jkl} (\bar{y}^j)_{;i} \Big) \ln \frac{\Lambda^2}{\mu^2} \\ \bar{w}_a^i \,, \; \bar{y}^i \; : \text{Killing vector for } SU(2)_L \,, \; U(1)_Y$$

$$\sum_{l=1}^{n} \bar{w}^{k} \bar{w}^{l} \bar{R}^{i}{}_{jkl} = \bar{w}^{\pi} \bar{w}^{\pi} \bar{R}^{i}{}_{j\pi\pi} + \bar{w}^{\phi^{I}} \bar{w}^{\phi^{J}} \bar{R}^{i}{}_{j\phi^{I}\phi^{J}}$$





$$S_{\mathrm{div}} = -\frac{1}{12\pi} \left(\epsilon_{3bc} (\bar{w}_c^k) (\bar{w}_3^l) \bar{R}^i{}_{jkl} (\bar{w}_b^j)_{;i} + \epsilon_{3bc} (\bar{w}_b^k) (\bar{w}_c^l) \bar{R}^i{}_{jkl} (\bar{y}^j)_{;i} \right) \ln \frac{\Lambda^2}{\mu^2}$$

$$\bar{w}_a^i , \ \bar{y}^i : \text{Killing vector for } SU(2)_L , \ U(1)_Y$$

$$\sum_{k,l} \bar{w}^k \bar{w}^l \bar{R}^i{}_{jkl} = \bar{w}^\pi \bar{w}^\pi \bar{R}^i{}_{j\pi\pi} + \bar{w}^{\phi^I} \bar{w}^{\phi^J} \bar{R}^i{}_{j\phi^I\phi^J}$$

$$S_{\mathrm{div}} = -\frac{1}{12\pi} \left(\epsilon_{3bc} (\bar{w}_c^k) (\bar{w}_3^l) \bar{R}^i{}_{jkl} (\bar{w}_b^j)_{;i} + \epsilon_{3bc} (\bar{w}_b^k) (\bar{w}_c^l) \bar{R}^i{}_{jkl} (\bar{y}^j)_{;i} \right) \ln \frac{\Lambda^2}{\mu^2}$$

$$\bar{w}_a^i, \ \bar{y}^i : \text{Killing vector for } SU(2)_L, \ U(1)_Y$$

$$\sum_{k,l} \bar{w}^k \bar{w}^l \bar{R}^i{}_{jkl} = \bar{w}^\pi \bar{w}^\pi \bar{R}^i{}_{j\pi\pi} + \bar{w}^\phi \bar{k}^l \bar{w}^\phi \bar{R}^i{}_{j\phi^I\phi^J}$$

$$\pi \to \pi + \langle h \rangle \qquad \phi^I \to \phi^I + i[Q_\phi]^I{}_J\phi^J$$

$$S_{\mathrm{div}} = -\frac{1}{12\pi} \left(\epsilon_{3bc} (\bar{w}_c^k) (\bar{w}_3^l) \bar{R}^i{}_{jkl} (\bar{w}_b^j)_{;i} + \epsilon_{3bc} (\bar{w}_b^k) (\bar{w}_c^l) \bar{R}^i{}_{jkl} (\bar{y}^j)_{;i} \right) \ln \frac{\Lambda^2}{\mu^2}$$

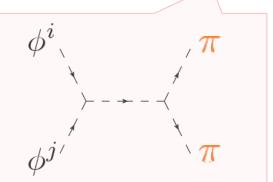
$$\bar{w}_a^i, \ \bar{y}^i : \text{Killing vector for } SU(2)_L, \ U(1)_Y$$

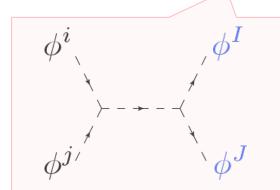
$$\sum_{k,l} \bar{w}^k \bar{w}^l \bar{R}^i{}_{jkl} = \bar{w}^\pi \bar{w}^\pi \bar{R}^i{}_{j\pi\pi} + 0 \times \bar{R}^i{}_{j\phi^I\phi^J}$$

$$\pi \to \pi + \langle h \rangle \qquad \phi^I \to \phi^I + i[Q_\phi]^I{}_J\phi^J$$

$$S_{\rm div} = -\frac{1}{12\pi} \Big(\epsilon_{3bc} [\bar{w}_c^k) (\bar{w}_3^l) \bar{R}^i{}_{jkl} (\bar{w}_b^j)_{;i} + \epsilon_{3bc} (\bar{w}_b^k) (\bar{w}_c^l) \bar{R}^i{}_{jkl} (\bar{y}^j)_{;i} \Big) \ln \frac{\Lambda^2}{\mu^2} \\ \bar{w}_a^i \,, \; \bar{y}^i \; : \text{Killing vector for } SU(2)_L \,, \; U(1)_Y$$

$$\sum_{k,l} \bar{w}^k \bar{w}^l \bar{R}^i{}_{jkl} = \bar{w}^{\pi} \bar{w}^{\pi} \bar{R}^i{}_{j\pi\pi} + 0 \times \bar{R}^i{}_{j\phi^I\phi^J}$$

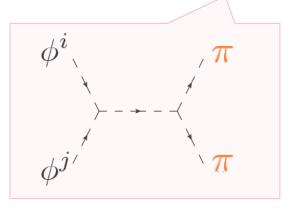


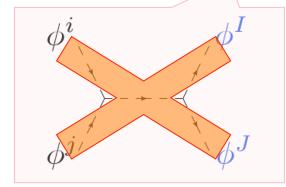


$$S_{\rm div} = -\frac{1}{12\pi} \Big(\epsilon_{3bc} (\bar{w}_c^k) (\bar{w}_3^l) \bar{R}^i{}_{jkl} (\bar{w}_b^j)_{;i} + \epsilon_{3bc} (\bar{w}_b^k) (\bar{w}_c^l) \bar{R}^i{}_{jkl} (\bar{y}^j)_{;i} \Big) \ln \frac{\Lambda^2}{\mu^2} \\ \bar{w}_a^i \,, \; \bar{y}^i \; : \text{Killing vector for } SU(2)_L \,, \; U(1)_Y$$

$$\sum_{k,l} \bar{w}^k \bar{w}^l \bar{R}^i{}_{jkl}$$

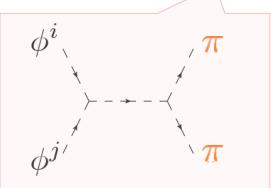
$$\sum \bar{w}^k \bar{w}^l \bar{R}^i{}_{jkl} = \bar{w}^{\pi} \bar{w}^{\pi} \bar{R}^i{}_{j\pi\pi} + 0 \times \bar{R}^i{}_{j\pi\pi}$$





$$S_{\rm div} = -\frac{1}{12\pi} \Big(\epsilon_{3bc} (\bar{\boldsymbol{w}}_c^k) (\bar{\boldsymbol{w}}_3^l) \bar{\boldsymbol{R}}^i{}_{jkl} (\bar{\boldsymbol{w}}_b^j)_{;i} + \epsilon_{3bc} (\bar{\boldsymbol{w}}_b^k) (\bar{\boldsymbol{w}}_c^l) \bar{\boldsymbol{R}}^i{}_{jkl} (\bar{\boldsymbol{y}}^j)_{;i} \Big) \ln \frac{\Lambda^2}{\mu^2} \\ \bar{\boldsymbol{w}}_a^i \,, \; \bar{\boldsymbol{y}}^i \; : \text{Killing vector for } SU(2)_L \,, \; U(1)_Y$$

$$\sum_{k,l} \bar{w}^k \bar{w}^l \bar{R}^i{}_{jkl} = \bar{w}^{\pi} \bar{w}^{\pi} \bar{R}^i{}_{j\pi\pi}$$



$$S_{\mathrm{div}} = -\frac{1}{12\pi} \left(\epsilon_{3bc} [\bar{w}_c^k) (\bar{w}_3^l) \bar{R}^i{}_{jkl} (\bar{w}_b^j)_{;i} + \epsilon_{3bc} (\bar{w}_b^k) (\bar{w}_c^l) \bar{R}^i{}_{jkl} (\bar{y}^j)_{;i} \right) \ln \frac{\Lambda^2}{\mu^2}$$

$$\bar{w}_a^i , \ \bar{y}^i : \text{Killing vector for } SU(2)_L , \ U(1)_Y$$

$$\sum \bar{w}^k \bar{w}^l \bar{R}^i{}_{jkl} = \bar{w}^\pi \bar{w}^\pi \bar{R}^i{}_{j\pi\pi}$$

$$\phi^i \qquad \qquad \phi^i \qquad \qquad \phi$$

When we require
$$S_{\rm div} = 0$$
 ...

imposing
$$\bar{R}_{ijkl}=0$$
 are too strict (perturbative unitary)

only
$$\bar{R}^i{}_{j\pi\pi}=0$$
 is enough

$$S_{\rm div} = -\frac{1}{12\pi} \left(\epsilon_{3bc} (\bar{w}_c^k) (\bar{w}_3^l) \bar{R}^i{}_{jkl} (\bar{w}_b^j)_{;i} + \epsilon_{3bc} (\bar{w}_b^k) (\bar{w}_c^l) \bar{R}^i{}_{jkl} (\bar{y}^j)_{;i} \right) \ln \frac{\Lambda^2}{\mu^2}$$

$$\bar{w}_a^i , \ \bar{y}^i : \text{Killing vector for } SU(2)_L , \ U(1)_Y$$

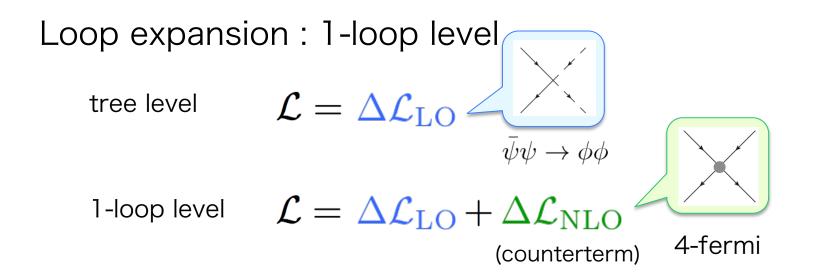
Finiteness of S perturbative unitarity (i.e.
$$S_{
m div}=0$$
) (i.e. $ar{R}_{ijkl}=0$)

Loop expansion

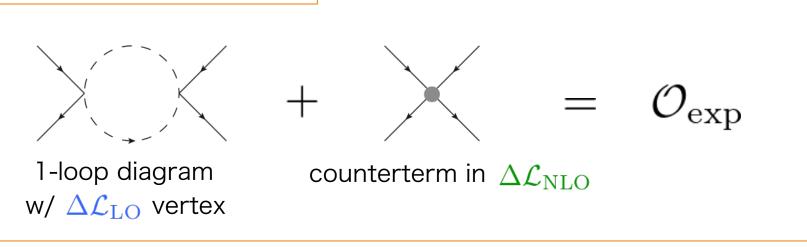
Loop expansion: tree level

tree level
$$\mathcal{L} = \Delta \mathcal{L}_{\mathrm{LO}}$$

$$\Delta \mathcal{L}_{LO} = \frac{v^2}{4} F(h) \text{Tr}[(D_{\mu}U)^{\dagger} D^{\mu}U] + \frac{1}{2} \partial_{\mu} h \partial^{\mu} h - V(h) + \cdots$$



Renormalization condition



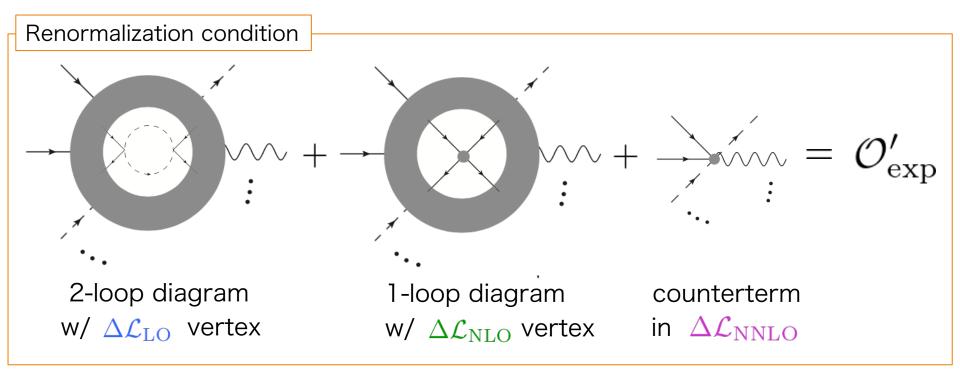
Observables not used for R.C. can be predicted

Loop expansion: 2-loop level

tree level
$$\mathcal{L} = \Delta \mathcal{L}_{\mathrm{LO}}$$

1-loop level
$$\mathcal{L} = \Delta \mathcal{L}_{LO} + \Delta \mathcal{L}_{NLO}$$

2-loop level
$$\mathcal{L} = \Delta \mathcal{L}_{LO} + \Delta \mathcal{L}_{NLO} + \Delta \mathcal{L}_{NNLO}$$



Power counting

表 7.1: 相互作用の分類と、NLO に含まれる個数

LO の vertex	φ^{2i}	$\overline{\psi}_{L(R)}\psi_{R(L)}\varphi^k$	$X_{\mu}arphi^l$	$X_{\mu}^{2}arphi^{s}$	X_{μ}^4	X_{μ}^{3}	$\overline{\psi}_{L(R)}\psi_{L(R)}X_{\mu}$
因子	p^2/v^{2i-2}	y/v^{k-1}	gp/v^{l-2}	g^2/v^{s-2}	g^2	gp	g
\mathcal{D}_L に含まれる個数	n_i	$ u_k$	m_l	r_s	\boldsymbol{x}	u	$z_L(z_R)$

L-loop diagram : \mathcal{D}_L

$$\mathcal{D}_L$$

$$\mathcal{D}_{L} \sim \frac{(yv)^{\nu}(gv)^{m+2r+2x+u+z}}{v^{F_{L}+F_{R}-2}} \frac{p^{d}}{\Lambda^{2L}} \bar{\psi}_{L}^{F_{L}^{1}} \psi_{L}^{F_{L}^{2}} \bar{\psi}_{R}^{F_{R}^{1}} \psi_{R}^{F_{R}^{2}} \left(\frac{X_{\mu\nu}}{v}\right)^{V} \left(\frac{\varphi}{v}\right)^{B}$$

$$d\equiv 2L+2-rac{F_L+F_R}{2}-V-
u-m-2r-2x-u-z$$

T, U parameter

1-loop corrections

Peskin-Takeuchi's S, T, U parameter

$$S_{\text{div}} = -\frac{1}{12\pi} \left(\epsilon_{3bc}(\bar{w}_c^k)(\bar{w}_3^l) \bar{R}^i{}_{jkl}(\bar{w}_b^j)_{;i} + \epsilon_{3bc}(\bar{w}_b^k)(\bar{w}_c^l) \bar{R}^i{}_{jkl}(\bar{y}^j)_{;i} \right) \ln \frac{\Lambda^2}{\mu^2}$$

$$U_{\text{div}} = \frac{1}{12\pi} \left(\epsilon_{1bc}(\bar{w}_b^k)(\bar{w}_c^l) \bar{R}^i{}_{jkl}(\bar{w}_1^j)_{;i} - \epsilon_{3bc}(\bar{w}_b^k)(\bar{w}_c^l) \bar{R}^i{}_{jkl}(\bar{w}_3^j)_{;i} \right) \ln \frac{\Lambda^2}{\mu^2}$$

$$T_{\text{div}} \sim \left[(\bar{w}_{1}^{i})(\bar{w}_{1}^{j}) - (\bar{w}_{3}^{i})(\bar{w}_{3}^{j}) \right] \\ \times \left\{ \bar{R}_{ikjl} [\bar{g}^{km} \bar{g}^{ln} \bar{V}_{;mn} + \bar{w}_{a}^{k} \bar{w}_{a}^{l} + \bar{y}^{k} \bar{y}^{l}] \right. \\ \left. - 4g_{W}^{2} (\bar{w}_{a}^{k})_{;i} (\bar{w}_{a}^{l})_{;j} \bar{g}_{kl} - 4g_{Y}^{2} (\bar{y}^{k})_{;i} (\bar{y}^{l})_{;j} \bar{g}_{kl} \right\} \ln \frac{\Lambda^{2}}{\mu^{2}}$$

T parameter

$$T_{\text{div}} \sim \left[(\bar{w}_{1}^{i})(\bar{w}_{1}^{j}) - (\bar{w}_{3}^{i})(\bar{w}_{3}^{j}) \right] \\ \times \left\{ \bar{R}_{ikjl} [\bar{g}^{km} \bar{g}^{ln} \bar{V}_{;mn} + \bar{w}_{a}^{k} \bar{w}_{a}^{l} + \bar{y}^{k} \bar{y}^{l}] \right. \\ \left. - 4g_{W}^{2} (\bar{w}_{a}^{k})_{;i} (\bar{w}_{a}^{l})_{;j} \bar{g}_{kl} - 4g_{Y}^{2} (\bar{y}^{k})_{;i} (\bar{y}^{l})_{;j} \bar{g}_{kl} \right\} \ln \frac{\Lambda^{2}}{\mu^{2}}$$

T parameter

$$T_{\text{div}} \sim \left[(\bar{w}_{1}^{i})(\bar{w}_{1}^{j}) - (\bar{w}_{3}^{i})(\bar{w}_{3}^{j}) \right] \\ \times \left\{ \bar{R}_{ikjl} [\bar{g}^{km} \bar{g}^{ln} \bar{V}_{;mn} + \bar{w}_{a}^{k} \bar{w}_{a}^{l} + \bar{y}^{k} \bar{y}^{l}] \right. \\ \left. - 4g_{W}^{2} (\bar{w}_{a}^{k})_{;i} (\bar{w}_{a}^{l})_{;j} \bar{g}_{kl} - 4g_{Y}^{2} (\bar{y}^{k})_{;i} (\bar{y}^{l})_{;j} \bar{g}_{kl} \right\} \ln \frac{\Lambda^{2}}{\mu^{2}}$$

T parameter

$$\begin{split} T_{\rm div} \; \sim \; & \left[(\bar{w}_1^i)(\bar{w}_1^j) - (\bar{w}_3^i)(\bar{w}_3^j) \right] \\ & \times \left\{ - 4g_W^2(\bar{w}_a^k)_{;i}(\bar{w}_a^l)_{;j}\bar{g}_{kl} - 4g_Y^2(\bar{y}^k)_{;i}(\bar{y}^l)_{;j}\bar{g}_{kl} \right\} \ln \frac{\Lambda^2}{\mu^2} \\ & = 0 \; (\; {\rm SM} \;) \\ & = 0 \; (\; {\rm 2HDM} \;) \\ & \quad \quad \ \ \, \neq 0 \; (\; {\rm Georgi \; Machacek \; Model}) \end{split}$$

Geometry and symmetry

Killing eq. = Model-independent correlation

Model-independent correlation
$$v_{i;j;k} = R^l{}_{kji}v_l$$
 $v_{i;j;k} = R^l{}_{kji}v_l$ should satisfy Killing eq. $v_{i;j;k} = R^l{}_{kji}v_l$

 v_i and $R^i{}_{jkl}$ in SM should satisfy Killing eq.

 v_i and $R^i{}_{jkl}$ in 2HDM should satisfy Killing eq.

 v_i and $R^i{}_{ikl}$ in SM + Singlet Model should satisfy Killing eq

Goal:

Model-independent constraints on new scalars

$$H^0, H^{\pm}, H^{\pm\pm}, \cdots$$

Goal:

Model-independent prediction on new scalars

$$H^0, H^{\pm}, H^{\pm\pm}, \cdots$$

Killing eq. = Model-independent correlation

$$v_{i;j;k} = R^l{}_{kji}v_l$$

 v_i and $R^i{}_{jkl}$ in SM should satisfy Killing eq.

 v_i and $R^i{}_{ikl}$ in 2HDM should satisfy Killing eq.

 v_i and $R^i{}_{jkl}$ in SM + Singlet Model should satisfy Killing eq.

