Double field inflation from high energy theory

MAN Ping Kwan
Waseda University
20th Feb 2020 (Thu)

Today's Agenda

1

A Short review of inflation

2

Superstring inflation with a GVW term

Numerical Results

3

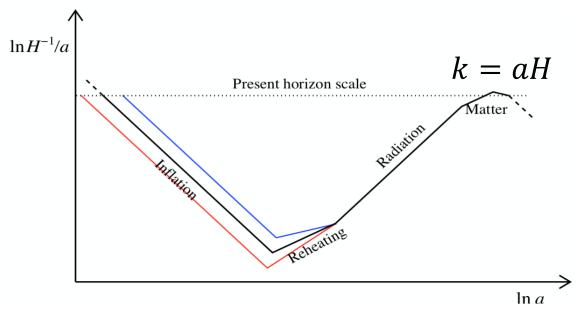
Inflation is adopted to solve flatness problem, horizon problem and monopole problem.

Inflation contributes to the dynamics of inflation of our universe, and its fluctuations lead to power spectrum.

Verification: by evaluating slow-roll parameters, spectral index, its running and tensor-to-scalar ratio and comparing them with the observation

Starobinsky model: best prediction (so far)

Slow-roll parameters	Range(s)	Spectral indices	Range(s)
ϵ_V	< 0.004	$n_s - 1$	[-0.0423, -0.0327]
η_V	[-0.021, -0.008]	$\alpha_s := \frac{dn_s}{d \ln k}$	[-0.008, 0.012]
ξ_V	[-0.0045, 0.0096]	$\beta_s := \frac{d^2 n_s}{d \ln k^2}$	[-0.003, 0.023]
$H_{ m hc}$	$< 2.5 \times 10^{-5} M_{\rm pl}$	$V_{ m hc}$	$< (1.6 \times 10^{16} \text{ GeV})^4$



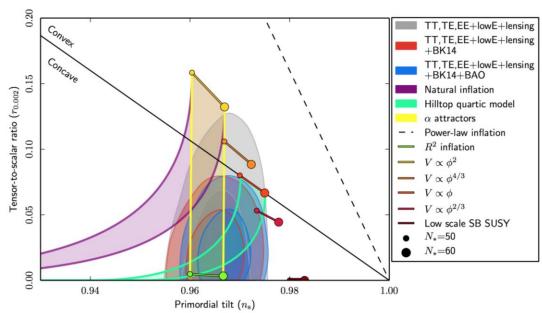


Fig. 8. Marginalized joint 68 % and 95 % CL regions for n_s and r at $k = 0.002 \,\mathrm{Mpc^{-1}}$ from Planck alone and in combination with BK14 or BK14 plus BAO data, compared to the theoretical predictions of selected inflationary models. Note that the marginalized joint 68 % and 95 % CL regions assume $dn_s/d \ln k = 0$.

A. Guth 80', Planck 18'

Motivations of Superstring for inflation

- High energy theory is required for describing the initial process of inflation.
- Superstring theory is the most promising model for describing high energy physics.
- Moduli stabilization (since the universe is relatively stable after inflation): e.g. KKLT scenario
- String swampland constraints support multi-field inflation

1807.04390 1903.06239 Phys. Rev. D 68 (2003) 046005, hep-th/0309187, hep-th/0511160, hep-th/0512232, 0707.2671 hep-th/0606095

The target of this talk

 We propose an inflation model in Type IIB orienti-folds, which consists of a non-perturbative term and a Gukov-Vafa-Witten (GVW) super-potential.

 It gives a significant turning of the inflation trajectory, which can be one of the fingerprints to verify the correct inflation dynamics.

Basic setups and assumptions: GVW

 We consider the type IIB orientifolds, where Gukov-Vafa-Witten (GVW) super-potential defined in a 6 dimensional internal CY space X6 is

$$W_{\text{GVW}} := \int_{\mathbf{X}_6} G_3 \wedge \Omega_3 = \int_{\mathbf{X}_6} (F_3 - iSH_3) \wedge \Omega_3.$$

S: dilaton field

Omega3: holomorphic 3 form

H3: NSNS 3 form field strength

F3: RR 3 form field strength

 complex structure moduli are much heavier than dilaton S and Kahler modulus T such that they are stabilized at their corresponding VEVs. Hence, GVW term becomes

$$W_{\text{GVW}}(S) = C + BS.$$

where B and C are constants with respect to S and T.

Basic setups and assumptions: NP term and Kahler

Also, non-perturbative (NP) terms (e.g. gaugino condensation and instanton effects) are present. For simplicity, we consider one non-perturbative term

$$W_{\rm NP} = \tilde{W}_0 + Ae^{-(aT+bS)},$$

Tilde W0, A: constants w.r.t. S and T a, b: constants

Hence, the total super-potential becomes

$$W_{\text{total}} = W_{\text{NP}} + W_{\text{GVW}} = W_0 + BS + Ae^{-(aT+bS)}$$

$$W_0 := W_0 + C$$

W0, B: constants w.r.t. S and T

• Kahler potential:

$$\frac{K}{M_{\rm pl}^2} = -\ln\left(\frac{S + \overline{S}}{M_{\rm pl}}\right) - 3\ln\left(\frac{T + \overline{T}}{M_{\rm pl}}\right),\,$$

hep-th/0512232, 0707.2671 hep-th/0606095 1411.4768

• F term potential:

$$V_F(T,S) = \frac{M_{\rm pl}^2 e^{-a(\bar{T}+T)-b(\bar{S}+S)}}{3(\bar{S}+S)(\bar{T}+T)^3} \left\{ a^2 A \bar{A} (\bar{T}+T)^2 \right\}$$

$$V_{F} = e^{\frac{K}{M_{\rm pl}^{2}}} \left(K^{I\bar{J}} D_{I} W D_{\bar{J}} \bar{W} - \frac{3}{M_{\rm pl}^{2}} |W|^{2} \right) \qquad +3a \left(\bar{T} + T \right) \left[A \left(\bar{B} \bar{S} + \overline{W_{0}} \right) e^{a\bar{T} + b\bar{S}} + \bar{A} \left[(BS + W_{0}) e^{aT + bS} + 2A \right] \right] \\ +3 \left[\left(\overline{W_{0}} - S\bar{B} \right) e^{a\bar{T} + b\bar{S}} + \bar{A} \left(b\bar{S} + bS + 1 \right) \right] \left[\left(W_{0} - B\bar{S} \right) e^{aT + bS} + Ab\bar{S} + Ab\bar{S} + Ab\bar{S} + A \right] \right\}$$

Further simplification of F term

$$V_{F}(T,S) = \frac{M_{\rm pl}^{2}e^{-a(\bar{T}+T)-b(\bar{S}+S)}}{3(\bar{S}+S)(\bar{T}+T)^{3}} \left\{ a^{2}A\bar{A}(\bar{T}+T)^{2} +3a(\bar{T}+T) \left[A(\bar{B}\bar{S}+\bar{W}_{0})e^{a\bar{T}+b\bar{S}} + \bar{A}[(BS+W_{0})e^{aT+bS}+2A] \right] +3 \left[(\bar{W}_{0}-S\bar{B})e^{a\bar{T}+b\bar{S}} + \bar{A}(b\bar{S}+bS+1) \right] \left[(W_{0}-B\bar{S})e^{aT+bS} + Ab\bar{S} + AbS + A] \right\}$$

Spread T and S into real and imaginary parts

$$A = A_R + iA_I, B = B_R + iB_I, W_0 = W_R + iW_I$$

- Reduce the arguments into S and T --> AI = BI = WI = 0
- Final F term:

$$V_F(T_R, T_I, S_R, S_I) = \frac{e^{-2(aT_R + bS_R)}}{48M_{\rm pl}S_R} \left(\frac{T_R^2}{M_{\rm pl}^2}\right)^{-3/2} \left\{ 6A_R e^{aT_R + bS_R} \left[\cos\left(aT_I + bS_I\right) \left[B_R S_R \left(2aT_R - 2bS_R - 1\right) + W_R \left(2aT_R + 2bS_R + 1\right)\right] - B_R S_I \left(2aT_R + 2bS_R + 1\right) \sin\left(aT_I + bS_I\right)\right] + A_R^2 \left[\left(2aT_R + 3\right)^2 + 12bS_R \left(bS_R + 1\right) - 6\right] + 3e^{2(aT_R + bS_R)} \left[B_R^2 \left(S_I^2 + S_R^2\right) - 2B_R S_R W_R + W_R^2\right] \right\}.$$

E.O.M.s

- Bosonic part of SUGRA Lagrangian: $\mathcal{L} = \sqrt{-g}\mathcal{L}_{SUGRA} = \sqrt{-g}\left[\frac{M_{pl}^2}{2}R K_{i\bar{j}}\nabla_{\mu}\phi^i\nabla^{\mu}\bar{\phi}^{\bar{j}} V\right],$
- Original kinetic term:

$$\begin{split} K_{i\bar{j}} \triangledown_{\mu} \phi^{i} \triangledown^{\mu} \bar{\phi}^{\bar{j}} &= \frac{\rho M_{\mathrm{pl}}^{2}}{\left(T + \bar{T}\right)^{2}} \triangledown_{\mu} T \triangledown^{\mu} \bar{T} + \frac{M_{\mathrm{pl}}^{2}}{\left(S + \bar{S}\right)^{2}} \triangledown_{\nu} S \triangledown^{\nu} \bar{S} \\ &= \frac{\rho M_{\mathrm{pl}}^{2}}{4T_{R}^{2}} \left(\triangledown_{\mu} T_{R} \triangledown^{\mu} T_{R} + \triangledown_{\mu} T_{I} \triangledown^{\mu} T_{I} \right) + \frac{M_{\mathrm{pl}}^{2}}{4S_{R}^{2}} \left(\nabla_{\mu} S_{R} \triangledown^{\mu} S_{R} + \nabla_{\mu} S_{I} \triangledown^{\mu} S_{I} \right). \end{split} \qquad \begin{aligned} &\text{i = 1,2} \\ &\text{V = F term} \\ &\text{rho = 3} \end{aligned}$$

- We consider the imaginary parts of S and T contribute to inflation and we fix TR and SR to some values. $K_{i\bar{j}}\nabla_{\mu}\phi^{i}\nabla^{\mu}\bar{\phi}^{\bar{j}} = \frac{\rho M_{\rm pl}^{2}}{4T_{-}^{2}}\nabla_{\mu}T_{I}\nabla^{\mu}T_{I} + \frac{M_{\rm pl}^{2}}{4S_{-}^{2}}\nabla_{\mu}S_{I}\nabla^{\mu}S_{I},$
- Hence, kinetic term becomes

• E.O.M.s:
$$-\left(\ddot{T}_{Ib} + 3H\dot{T}_{Ib}\right) - \frac{2T_{Rb}^2}{\rho M_{\rm pl}^2} V_{T_I}|_b = 0,$$
 $H^2\left[T_{Ib}'' + (3-\epsilon)T_{Ib}'\right] + \frac{2T_{Rb}^2}{\rho M_{\rm pl}^2} V_{T_I}|_b = 0,$ $-\left(\ddot{S}_{Ib} + 3H\dot{S}_{Ib}\right) - \frac{2S_{Rb}^2}{M_{\rm pl}^2} V_{S_I}|_b = 0.$ $H^2\left[T_{Ib}'' + (3-\epsilon)T_{Ib}'\right] + \frac{2T_{Rb}^2}{\rho M_{\rm pl}^2} V_{T_I}|_b = 0,$

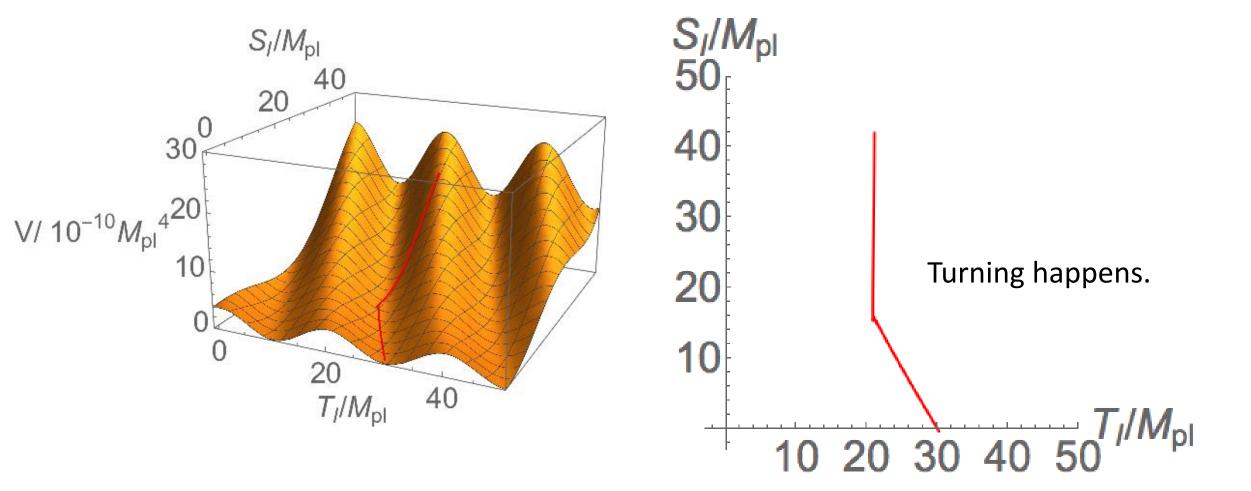
dot: time derivative, slash b: evaluated at the bk values

prime: e-folding derivative (For observation comparison)

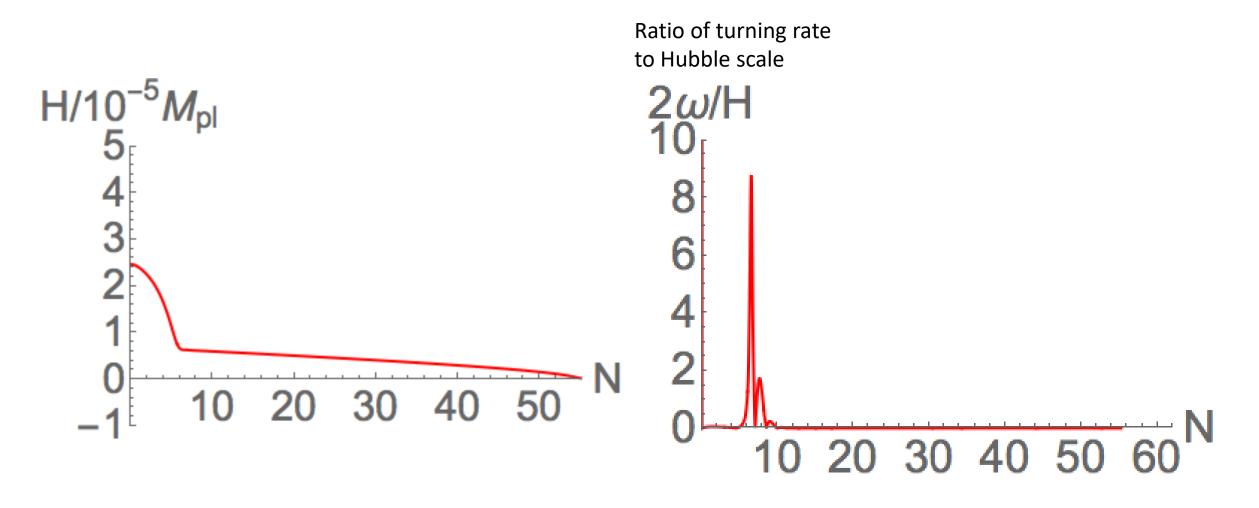
Numerical results

ρ	N_{initial}	$A_I/M_{ m pl}$	$B_I/M_{ m pl}$	$W_I/M_{ m pl}$	$T'_{R}\left(N\right)$	$T'_{I}(N=0)$	$S'_{R}(N)$	$S'_{I}(N=0)$
3	0	0	0	0	0	10^{-5}	0	10^{-5}

T_R	$T_{I ini}$	S_R	$S_{I ini}$	$T_{I\mathrm{end}}$	$S_{I\mathrm{end}}$	$V_{ m min}/M_{ m pl}^4$	$A_R/M_{ m pl}$	$B_R/M_{ m pl}$	$W_R/M_{ m pl}$	$a/M_{\rm pl}^{-1}$	$b/M_{\rm pl}^{-1}$	$N_{ m end}$
0.7825	21	5	42	30.0419	2.15291×10^{-10}	1.31976×10^{-13}	3.61×10^{-5}	5×10^{-6}	10.11×10^{-5}	$2\pi/20$	$2\pi/58$	54.461



Numerical Results



For the definition of turning rate, please refer to arXiv: 1310.8285.

Conclusions and future work

- We study double field (TI and SI) inflation dynamics of superstring theory with a GVW term and non-perturbative term.
- There exists a significant turning in the inflation trajectory such that the ratio of turning rate to Hubble is of scale O(1).
- Investigation of effective mass of entropic perturbation, which is the probe to show the change of curvature of the potential.
- Check of other possible parameters to realize successful inflation.
- We hope that turning rate per Hubble can be one of the observables so as to verify the correct inflation model.