Simple Theory of Chiral Fermion Dark Matter

Tomohiro Abe

Institute for Advanced Research, KMI, Nagoya U.

in collaboration with **K. S. Babu** Oklahoma State University

arXiv:1912.11332

Tomohiro Abe (IAR, KMI Nagoya U)

By hand in many models

$$m\bar{\psi}\psi, \ \frac{1}{2}m^2\phi\phi, \cdots$$

By hand in many models

$$m\bar{\psi}\psi, \ \frac{1}{2}m^2\phi\phi, \cdots$$

Mass scale is typically determined by condensation of somethings

- (e.g.1) QCD $\langle q\bar{q} \rangle$
- (e.g. 2) Higgs $\langle H \rangle$

By hand in many models

$$m\bar{\psi}\psi, \ \frac{1}{2}m^2\phi\phi, \cdots$$

Mass scale is typically determined by condensation of somethings

- (e.g.1) QCD $\langle q\bar{q} \rangle$
- (e.g. 2) Higgs $\langle H \rangle$

Mass of DM is also determined by condensation ?

What we have done in our work

- We assume that the mass of a spin- $\frac{1}{2}$ dark matter is proportional to a VEV of a scalar field
- We constructed a simple model and studied its phenomenology

What we have done in our work

- We assume that the mass of a spin- $\frac{1}{2}$ dark matter is proportional to a VEV of a scalar field
- We constructed a simple model and studied its phenomenology

$$\mathscr{L} \supset -m\bar{\psi}\psi - y\bar{\psi}\psi\phi$$

forbidden by a symmetry $\sqrt{\langle \phi \rangle} \neq 0$

DM mass is proportional to a VEV of a scalar field

Let's forbid the mass term

 $\mathcal{L} \supset - m\bar{\psi}\psi - y\bar{\psi}\psi\phi$

Let's forbid this term

- Use a gauge symmetry to forbid mass terms
- mass of vector-like fermions are not forbidden by symmetries…
- Let's use a chiral fermion

U(I) gauge symmetry does not work

There are gauge anomaly

- At least 5 chiral fermions are required to forbid mass terms with anomaly cancellation
 [hep-ph/0312285, hep-ph/0504198, hep-ph/0510181, 1102.4688, 1605.03610, 1905.13729, 2001.11991, …]
- model becomes complicated…
- let's seek other possibilities

doublet fermion

• This does not work due to the Witten anomaly

triplet fermion

• This does not work because Majorana mass terms can be written

doublet fermion

• This does not work due to the Witten anomaly

triplet fermion

• This does not work because Majorana mass terms can be written

4-plet fermion

doublet fermion

• This does not work due to the Witten anomaly

triplet fermion

• This does not work because Majorana mass terms can be written

4-plet fermion

- No Witten anomaly!
- No mass term!
 - * $4 \times 4 = 7 + 5 + 3 + 1$
 - * 5 and 1 are anti-symmetric and are zero

doublet fermion

• This does not work due to the Witten anomaly

triplet fermion

• This does not work because Majorana mass terms can be written

4-plet fermion

- No Witten anomaly!
- No mass term!
 - * $4 \times 4 = 7 + 5 + 3 + 1$
 - * 5 and 1 are anti-symmetric and are zero

We use 4-plet fermion!

SU(2) rep. of scalar

3 or 7 is the candidate for scalar that couples to the fermion

•
$$4 \times 4 = 7 + 5 + 3 + 1$$

SU(2) rep. of scalar

3 or 7 is the candidate for scalar that couples to the fermion

•
$$4 \times 4 = 7 + 5 + 3 + 1$$

3 is not a good candidate

- U(1) remains after the SU(2) breaking by 3
- a massless gauge boson is predicted, not good for phenomenology
- a 7-plet scalar is only the candidate for us

Model

SM x SU(2)_{Dark}

- an SU(2)_{Dark} 4-plet chiral fermion
- an SU(2)_{Dark} 7-plet scalar

Model

SM x SU(2)_{Dark}

- an SU(2)_{Dark} 4-plet chiral fermion
- an SU(2)_{Dark} 7-plet scalar

$$\mathscr{L} \supset - m\bar{\psi}\psi - y\bar{\psi}\psi\phi$$

Simple spin-1/2 chiral dark matter model that the mass of DM is proportional to the VEV!

Model

SM x SU(2)_{Dark}

- an SU(2)_{Dark} 4-plet chiral fermion
- an SU(2)_{Dark} 7-plet scalar

$$\mathscr{L} \supset - m\bar{\psi}\psi - y\bar{\psi}\psi\phi$$

Simple spin-1/2 chiral dark matter model that the mass of DM is proportional to the VEV!

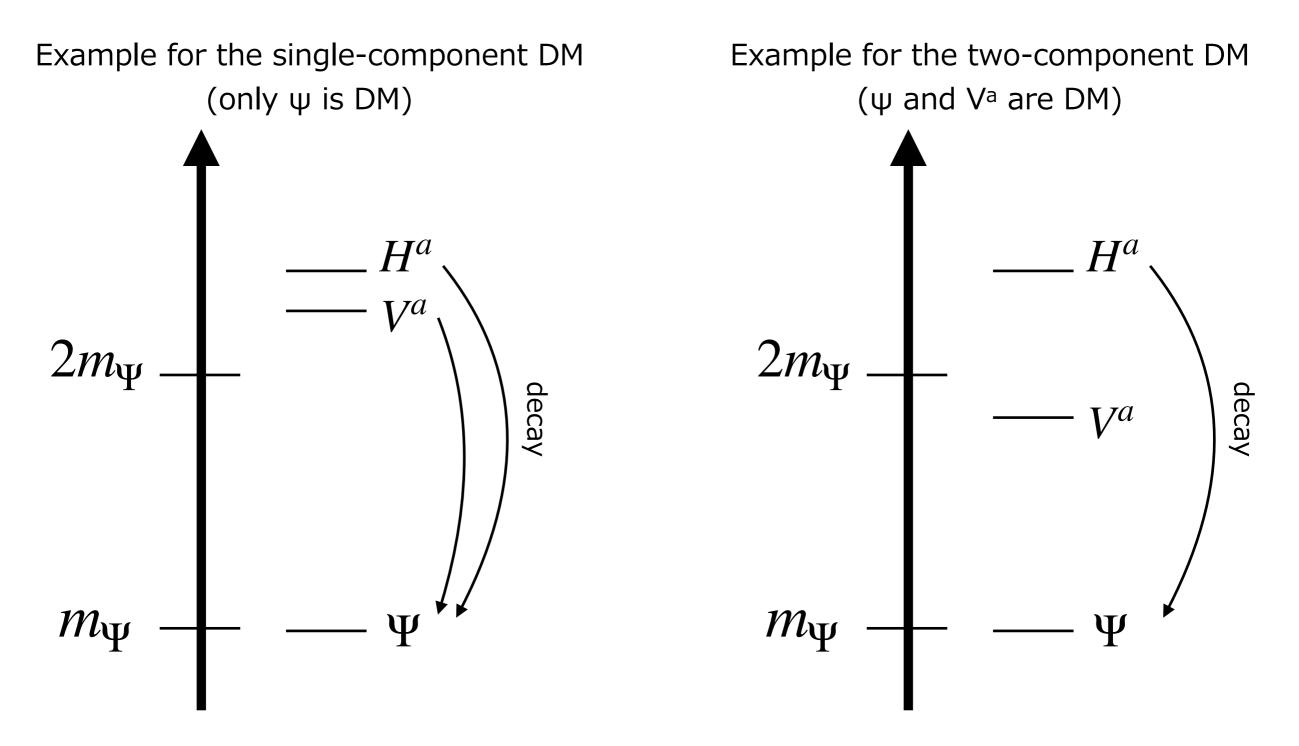
Distinctive features of the 7-plet

- Discrete symmetries remain after SU(2)_{Dark} breaking
- In our setup, T' (double covering of A_4) remains
- The irreducible reps. of T' are $3,2,2^{\prime},2^{\prime\prime},1,1^{\prime},1^{\prime\prime}$
- SM particles are $SU(2)_{Dark}$ singlet and thus 1
- Particles other than 1 are DM candidates

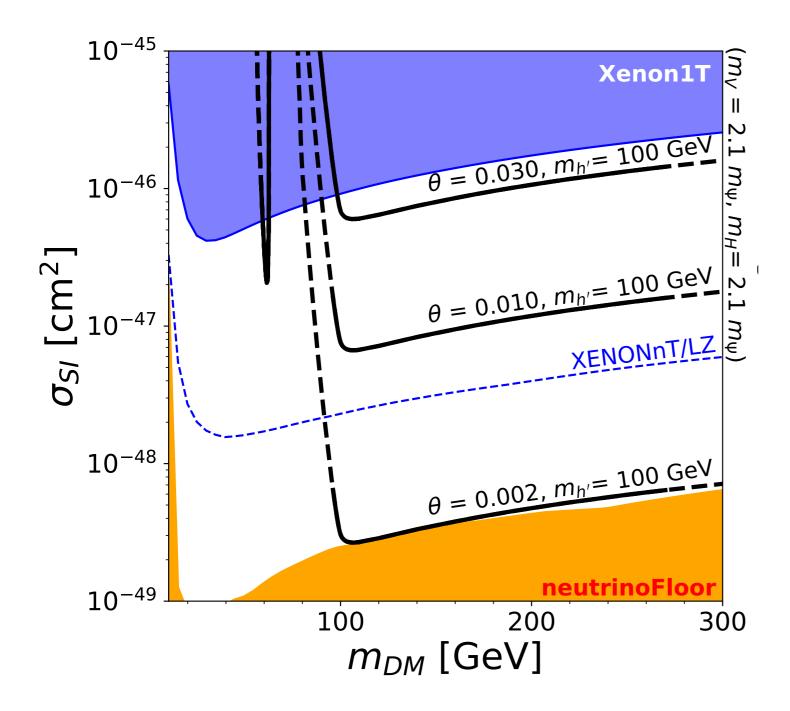
Representation of new particles under T'

gauge field

• V_{μ}^{a} : SU(2)_{Dark} gauge fields; 3


scalar fields (7 = 3 + 3 + 1)

- π^a : would-be Nambu-Goldstone boson; 3
- *H^a* : physical scalars; 3
- h': scalar around the fluctuation of the VEV; 1
 - ★ h' mixes with the SM Higgs, and thus phenomenology is similar to the Higgs portal models


fermion fields (4 = 2' + 2'')

• Ψ : Dirac fermion 2'

single or multi-component DM

The result of the case Ψ is the only DM

- $\Omega h^2 = 0.12$ (by choosing the Yukawa coupling)
- we have a chance to see signal near future at XENONnT/LZ
- Dashed curves are exulted by perturbative unitarity of the gauge and Yukawa couplings
 - $\rightarrow m_{\Psi} \lesssim 280 \text{ GeV}$

Summary

We constructed a DM model where its mass is proportional to the VEV of a scalar field

- SU(2)_{Dark} 4-plet chiral fermion
- SU(2)_{Dark} 7-plet scalar

Distinctive features

- A discrete symmetry T' remains after the $SU(2)_{Dark}$ breaking
- Model can be multi-component DM model depending on the mass spectra

phenomenology (single component case)

- m_{DM} < 280 GeV (perturbative unitarity)
- signal is expected at the direct detection exp. in future.