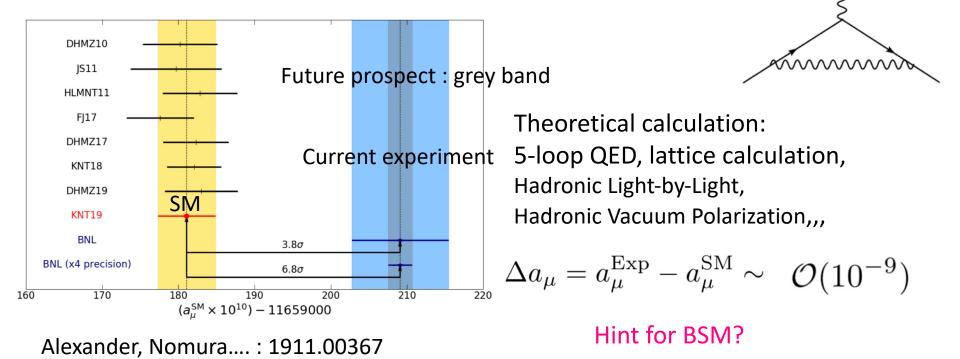
Testing the 2HDM explanation of the muon g-2 anomaly at the LHC

Syuhei Iguro

Based on JHEP 1911 (2019) 130 1907.09845 with Y. Omura(Kindai), M. Takeuchi(KMI)

Key words: Collider, muon g-2, Lepton flavor violation

Menu


- Introduction of the muon g-2 anomaly
- Our model
- Collider signal
- Summary

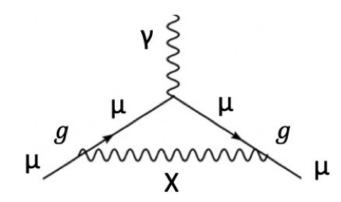
muon g-2 anomaly

$$ec{\mu}=-grac{e}{2m}ec{S}$$
 $\ensuremath{\ensuremath{\vec{\mu}}}$: Magnetic moment of the muon

g=2: tree level corresponds to 2 freedoms (spin up and down)

Anomalous magnetic moment: $\alpha_{\mu} = (g - 2)/2$

KEKPH2020 The new data will come soon!


Current status Slide by D. Nomura @CLFV2019 2011 2018 In 10⁻¹⁰ QED 11658471.81 (0.02) 11658471.90 (0.01) [arXiv:1712.06060] \rightarrow EW 15.40 (0.20) 15.36 (0.10) [Phys. Rev. D 88 (2013) 053005] \rightarrow LO HLbL 10.50 (2.60) 9.80 (2.60) [EPJ Web Conf. 118 (2016) 01016] \longrightarrow hadronic light-by-light scattering (HLbL) 7.20(4.31) 1911.08123, Lattice result! NLO HLbL all errors systematically controlled LO HVP **Consistent with previous result.** -9.82 (0.04) this work NLO HVP Fig. by Marc. NNLO HVP 1.24 (0.01) [Phys. Lett. B 734 (2014) 144] 11659182.80 (4.94) 11659182.05 (3.56) this work Theory total \rightarrow Experiment 11659209.10 (6.33) world avg 26.1 (8.0) 27.1 (7.3) this work Exp - Theory 3.3σ **3.7** σ this work Δa_{μ} (HVP: Hadronic Vacuum Polarization) (Numbers taken from KNT18, Phys. Rev. D97 (2018) 114025) (HLbL: Hadronic Light-by-Light) anomaly of man g-2

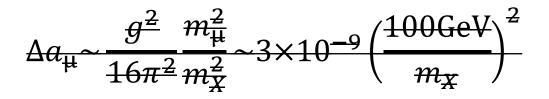
If this anomaly is true, we need some new physics!

What kind of new physics you need?

Naïve new physics scale to explain muon g-2 anomaly.

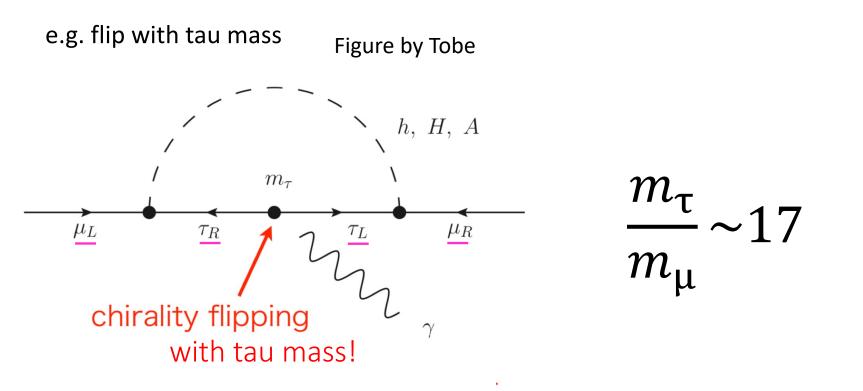
If new particle X appear at 1-loop with a flavor diagonal coupling

$$\Delta a_{\mu} \sim \frac{g^2}{16\pi^2} \frac{m_{\mu}^2}{m_X^2} \sim 3 \times 10^{-9} \left(\frac{100 \text{GeV}}{m_X}\right)^2 \quad \text{EW scale }!$$


Various models are tested so far.KEKPH2020No signal so far.

- Is there any good mechanism to enhance the contribution of Δa_{μ} ?
- → heavier mass or smaller coupling is allowed and it could be relatively difficult to test in current experiments.

$$\Delta a_{\mu} \sim \frac{g^2}{16\pi^2} \frac{m_{\mu}^2}{m_{\chi}^2} \sim 3 \times 10^{-9} \left(\frac{100 \text{GeV}}{m_{\chi}}\right)^2$$


One solution is Chirality enhancement

- Is there any good mechanism to enhance the contribution of Δa_{μ} ?
- → heavier mass or smaller coupling is allowed and it could be relatively difficult to test in current experiments.

Chirality enhancement

Chirality flip with a heavy internal fermion mass($>> m_{\mu}$)

When $\Delta a_{\mu} \propto coupling^2$ coupling can be smaller by $\sqrt{17}$ or mass can be heavy by $\sqrt{17}$

Model examples

- τμ flavor violating G2HDM Tobe, et al 1502.07824
- τµ flavor violating gauge boson,
 Soni,et al 1607.06832
 τ mage

τ mass enhancement $m_{\tau}/m_{\mu} \sim 17$

This talk!

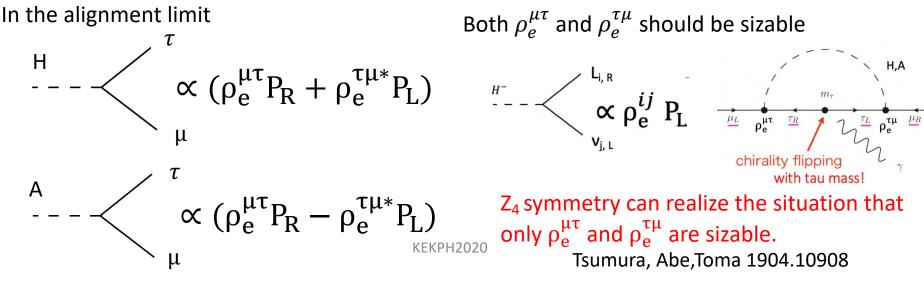
- Leptoquark(LQ) is also discussed, Bauer,Neubert 1511.01900 Top mass enhancement $m_t/m_{\mu} \sim 1600$
- Mixing with Heavy vector like leptons 0102122, 1305.3522 Heavy lepton mass enhancement KEKPH2020 $m_L/m_{
 m u} \sim 10 \times m_L$ [GeV]

Model: G2HDM We do not assume Z₂ symmetry

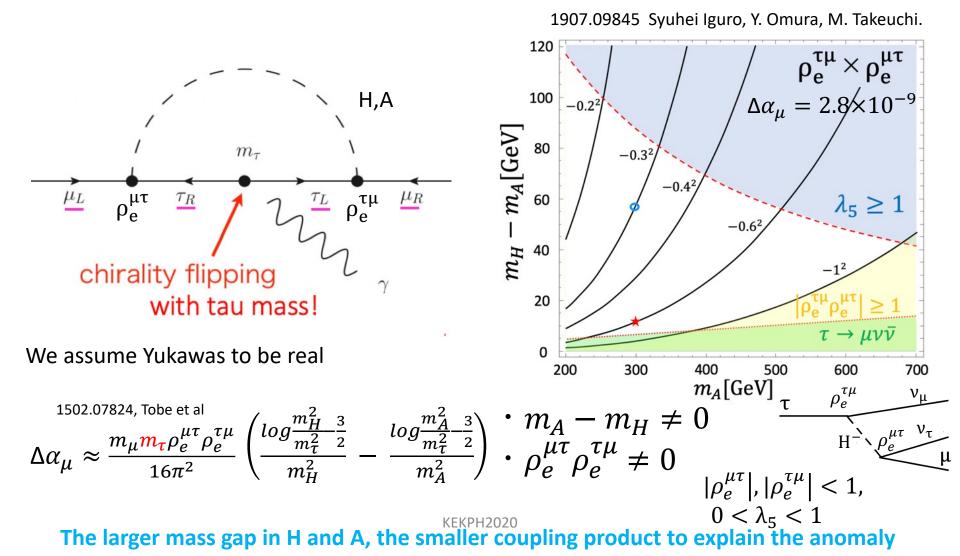
Mass relation $m_{H}^{2} = m_{A}^{2} + \lambda_{5}v^{2}$, $m_{H^{-}}^{2} = m_{A}^{2} - \frac{\lambda_{4} - \lambda_{5}}{2}v^{2}$ $\frac{\lambda_{2}}{\ln a \text{ potencial}}$ Yukawa couplings between a neutral scalar and fermions

$$\Phi=h,H,A$$

$$f_{i}$$

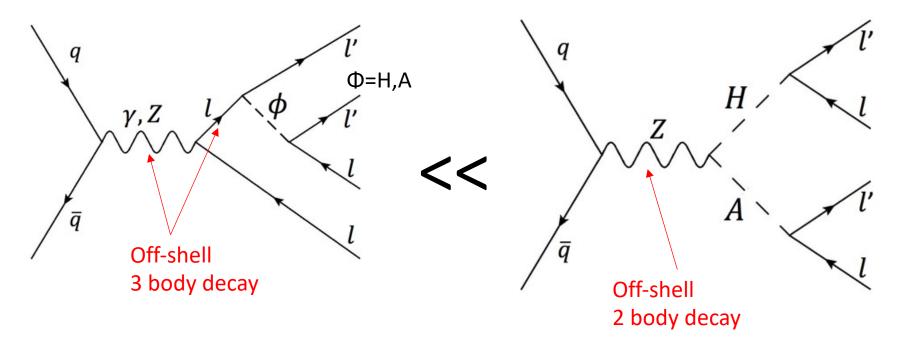

$$\approx i(y_{\Phi ij}^{f} P_{R} + y_{\Phi ji}^{f*} P_{L})$$

$$f_{j}$$


$$y_{hij}^{f} = \frac{m_{f}^{i}}{v}, \quad y_{Hij}^{f} = -\frac{\rho_{f}^{ij}}{\sqrt{2}},$$

$$y_{Aij}^{f} = \begin{cases} -\frac{i\rho_{f}^{ij}}{\sqrt{2}} \text{ for } f = u \\ +\frac{i\rho_{f}^{ij}}{\sqrt{2}} \text{ for } f = d, e, \end{cases}$$

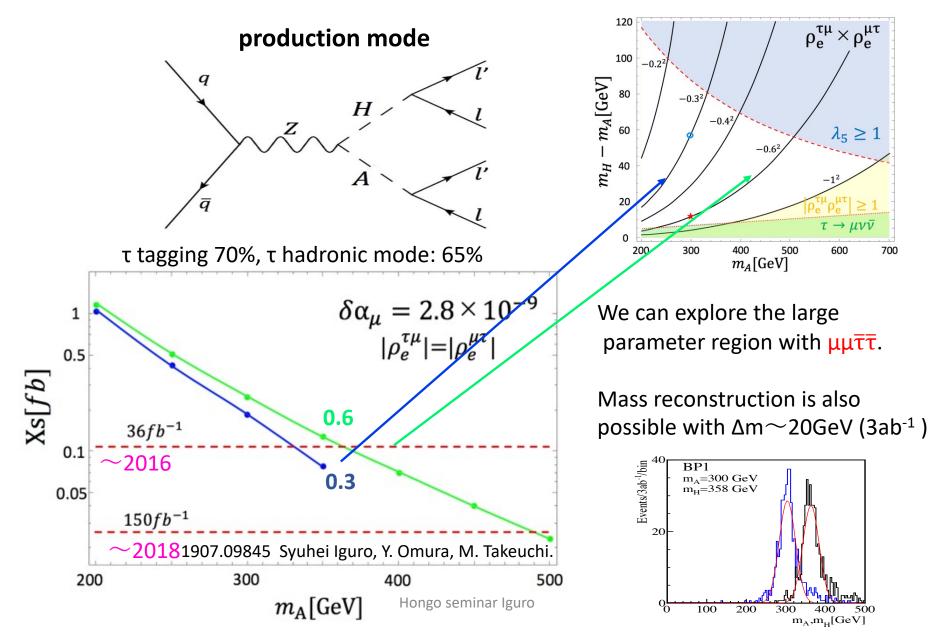
Yukawa interactions relevant to muon g-2


If $\rho_e^{\mu\tau}$ and $\rho_e^{\tau\mu}$ are only sizable entries, this model can explain the anomaly.

If only $\rho_e^{\tau\mu}$ and $\rho_e^{\mu\tau}$ are sizable It is difficult to test in flavor physics. τ Additional scalars do not talk to quark. How we test the scenario? H,A have $SU(2)_{I}$ charge! Additional scalars are generated in pair via so-called an electroweak production.

H, A decay into $\mu\tau$ (LFV heavy resonance).

$\mu\mu\overline{\tau}\overline{\tau}$ final state in LHC


Distinctive features of our signal

- 2 $\mu\tau$ LFV heavy resonances
- same sign lepton pairs

Hongo seminar Iguro

Impact of $\mu\mu\overline{\tau}\overline{\tau}$ search

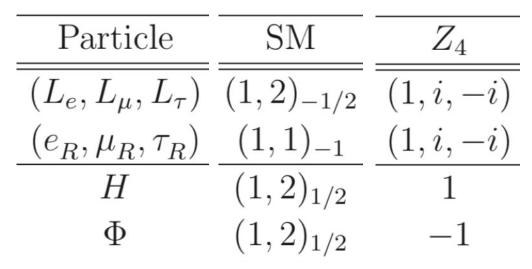
Summary

Testing the 2HDM explanation of the muon g-2 anomaly at the LHC

Chirality enhancement is a very useful mechanism to explain the muon g-2 anomaly.

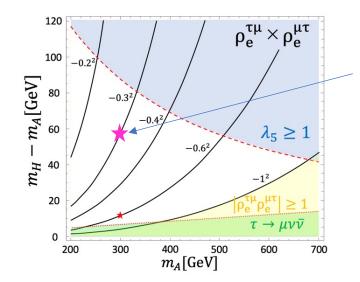
G2HDM with $\mu\tau$ flavor violation can explain the anomaly due to the τ mass enhancement.

We showed that the scenario is already testable with $\mu\mu\overline{\tau}\overline{\tau}$ signal. Please measure the mode!


Even if the deviation become smaller, this signal is powerful as long as $BR(H->\mu\tau)$ is dominant.

Thank you so much for listening!

More realistic model


Tsumura, Abe, Toma 1904.10908

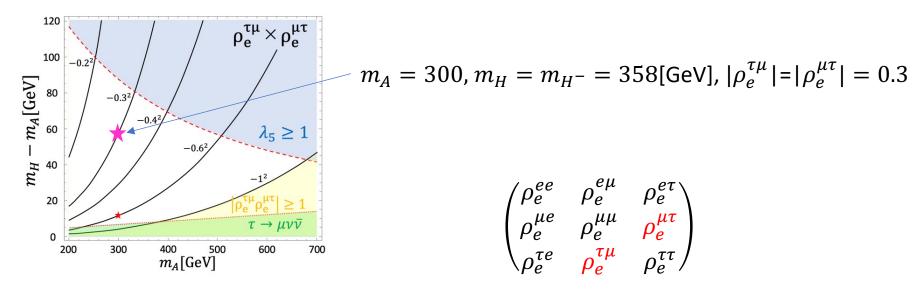
 $\left(SU(3)_c, SU(2)_L\right)_{U(1)_Y}$

$$-\mathcal{L}_{Z_4}^{\text{yukawa}} = \overline{\ell_R} \begin{pmatrix} y_e H^{\dagger} & & \\ & y_{\mu} H^{\dagger} & \underline{y_{\mu\tau}} \Phi^{\dagger} \\ & & y_{\tau\mu} \Phi^{\dagger} & \overline{y_{\tau}} H^{\dagger} \end{pmatrix} L + \text{H.c.}$$

Additional scalars can only couple to $\mu\tau$

 $m_A = 300, m_H = m_{H^-} = 358$ [GeV], $|\rho_e^{\tau\mu}| = |\rho_e^{\mu\tau}| = 0.3$

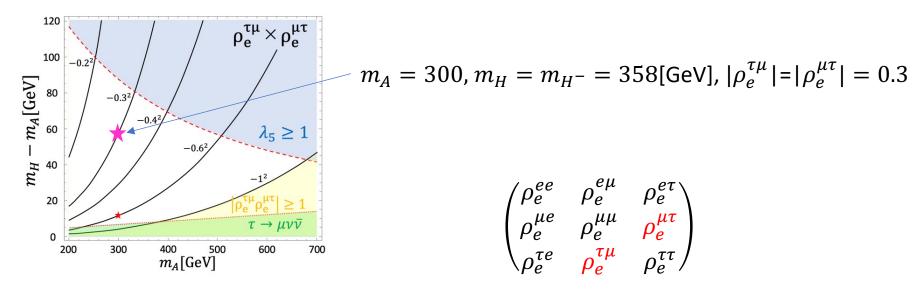
Which yukawa can be large to dilute BR?

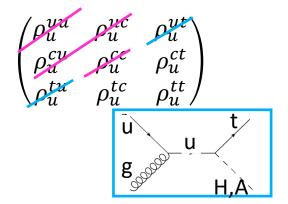

$$\begin{pmatrix} \rho_e^{ee} & \rho_e^{e\mu} & \rho_e^{e\tau} \\ \rho_e^{\mu e} & \rho_e^{\mu\mu} & \rho_e^{\mu\tau} \\ \rho_e^{\tau e} & \rho_e^{\tau\mu} & \rho_e^{\tau\tau} \end{pmatrix}$$

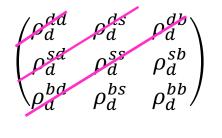
Lepton Yukawa

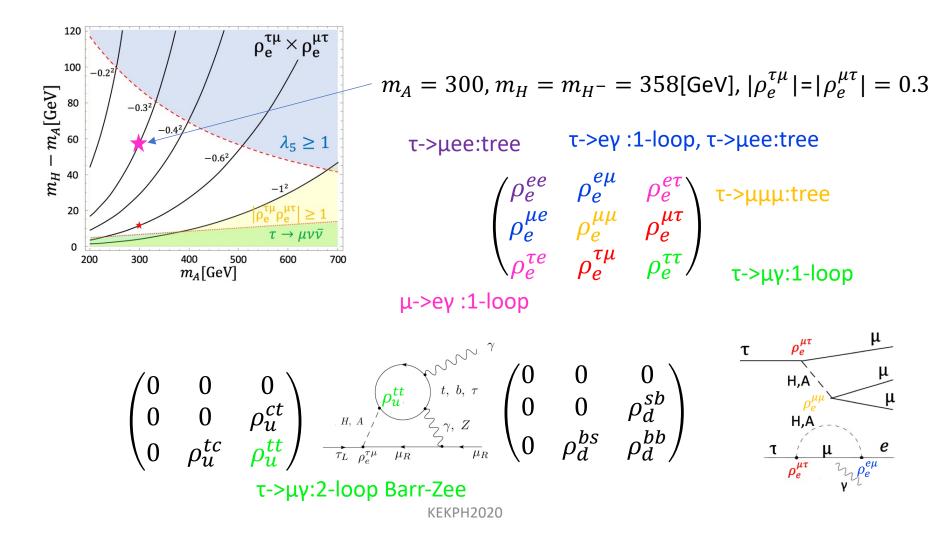
 $\begin{pmatrix} \rho_u^{uu} & \rho_u^{uc} & \rho_u^{ut} \\ \rho_u^{cu} & \rho_u^{cc} & \rho_u^{ct} \\ \rho_u^{tu} & \rho_u^{tc} & \rho_u^{tt} \end{pmatrix}$ Up type quark

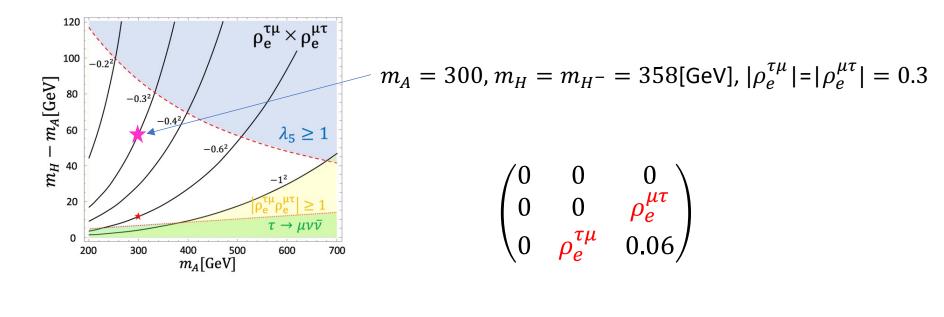
 $\begin{pmatrix} \rho_d^{dd} & \rho_d^{ds} & \rho_d^{db} \\ \rho_d^{sd} & \rho_d^{ss} & \rho_d^{sb} \\ \rho_d^{bd} & \rho_d^{bs} & \rho_d^{bb} \end{pmatrix}$


Down type quark

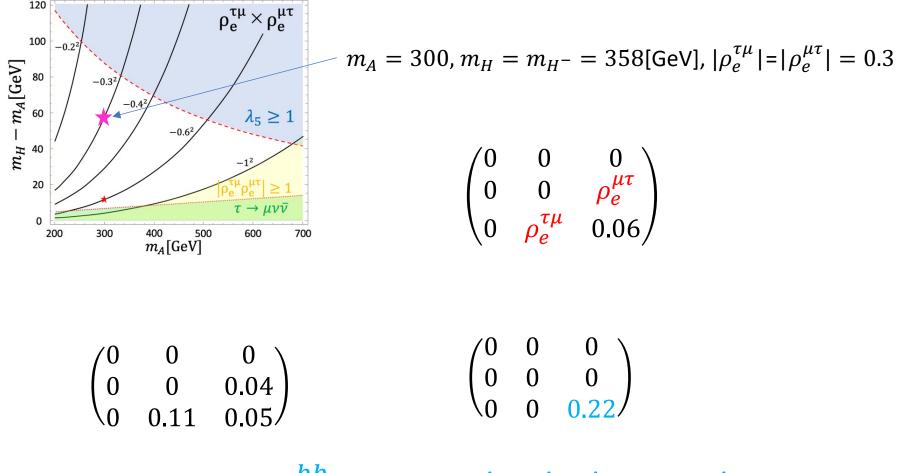

Couplings to the light quark are dangerous for collider physics.

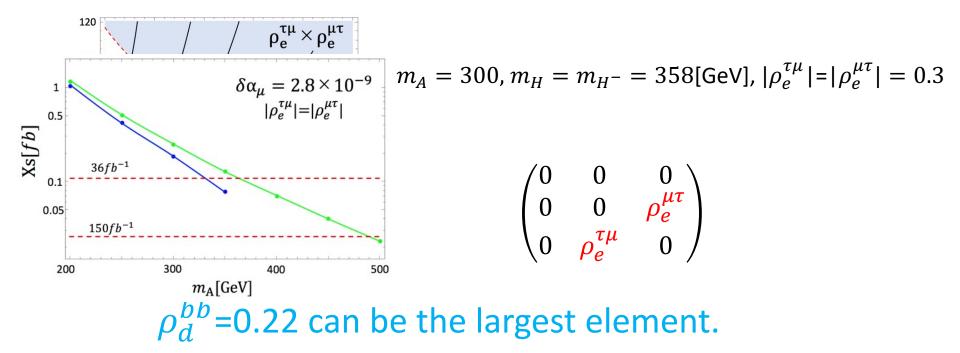

$$\begin{array}{c|cccc} \rho_{u}^{uu} & \rho_{u}^{uc} & \rho_{u}^{ut} \\ \rho_{u}^{cu} & \rho_{u}^{cc} & \rho_{u}^{ct} \\ \rho_{u}^{tu} & \rho_{u}^{tc} & \rho_{u}^{tt} \\ \rho_{u}^{tu} & \rho_{u}^{tc} & \rho_{u}^{tt} \end{array}$$


$$\begin{pmatrix} \rho_d^{dd} & \rho_d^{ds} & \rho_d^{db} \\ \rho_d^{sd} & \rho_d^{ss} & \rho_d^{sb} \\ \rho_d^{bd} & \rho_d^{bs} & \rho_d^{bb} \end{pmatrix}$$



Couplings to the light quark are dangerous for collider physics.




$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \rho_{u}^{ct} \\ 0 & \rho_{u}^{tc} & 0.05 \end{pmatrix} \epsilon_{K}: H^{-} \log \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \rho_{d}^{sb} \\ 0 & \rho_{d}^{bs} & \rho_{d}^{bb} \end{pmatrix}$$

$$\frac{B(B \to D^{*}\mu\nu)}{B(B \to D^{*}e\nu)}: H^{-} \text{ tree,} \qquad B \to \mu\nu, \qquad B \to \mu\nu, \qquad B \to \tau\nu \qquad \rho_{d}^{bb} V_{cb} \qquad \rho_{e}^{\mu\tau}$$

$$\mu\nu \text{ resonance search} \qquad \qquad B \to \tau\nu \qquad \rho_{d}^{bb} V_{cb} \qquad \rho_{e}^{\mu\tau}$$

 $\rho_d^{bb} = 0.2 \mathbb{R}^{bb}$

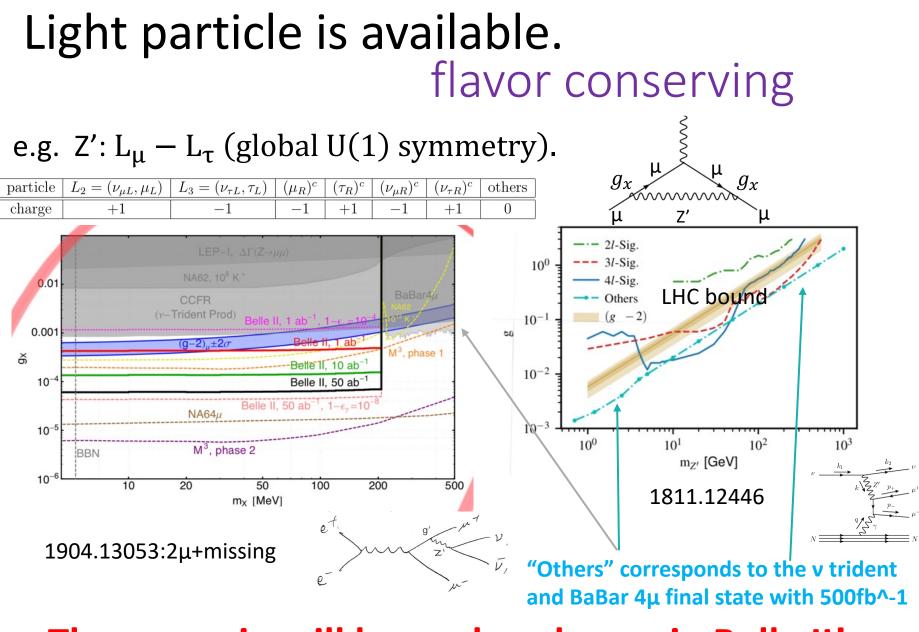
Then signal number can be **30%** of original one. We need 3 times more luminosity to obtain the original sensitivity at most.

Current status

Slide by D. Nomura @CLFV2019

In	10 ⁻¹⁰ <u>20</u>	D11	<u>2018</u>
QED	11658471.81 (0	.02) —>	11658471.90(0.01) [arXiv:1712.06060]
EW	15.40 <mark>(</mark> 0	.20) →	15.36~(0.10) [Phys. Rev. D 88 (2013) 053005]
LO HLbL	10.50 (2	$(.60) \longrightarrow$	9.80 (2.60) [EPJ Web Conf. 118 (2016) 01016
NLO HLbL			0.30 (0.20) [Phys. Lett. B 735 (2014) 90]
	HLMN	<u>T11</u>	<u>KNT18</u>
LO HVP	694.91 (4	$(.27) \longrightarrow$	693.27 (2.46) this work
NLO HVP	-9.84 (0	0.07) →	-9.82 (0.04) this work
NNLO HVP			1.24~(0.01) [Phys. Lett. B 734 (2014) 144]
Theory total	11659182.80 (4	.94) →	11659182.05 (3.56) this work
Experiment			11659209.10 (6.33) world avg
Exp - Theory	26.1 ($(8.0) \longrightarrow$	27.1 (7.3) this work
Δa_{μ}		$3.3\sigma \longrightarrow$	3.7σ this work
′P: Hadronic Vacuum Polarization) bL: Hadronic Light-by-Light)			(Numbers taken from KNT18, Phys. Rev. D97 (2018) 114025)
	anomaly		uon g-2

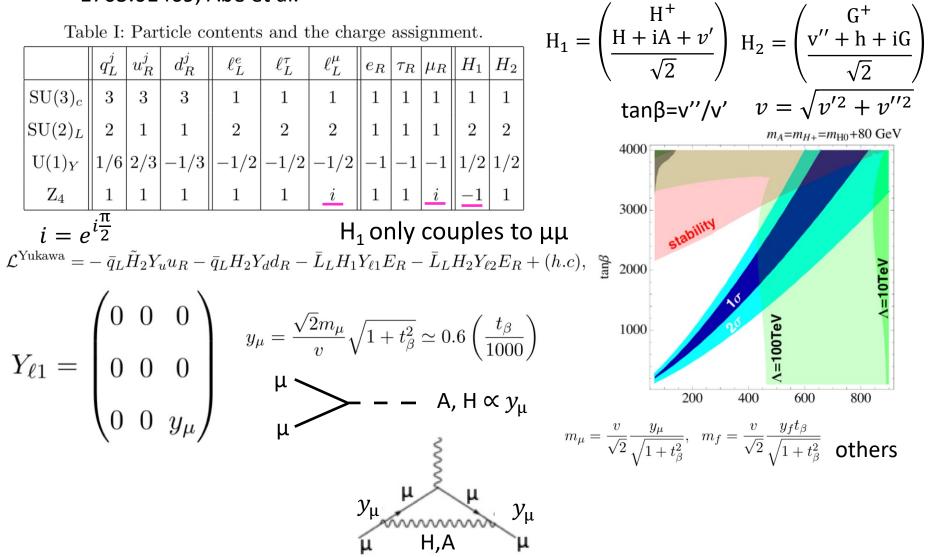
Current status Slide by D. Nomura @CLFV2019 2011 2018 In 10⁻¹⁰ QED 11658471.81 (0.02) 11658471.90 (0.01) [arXiv:1712.06060] \rightarrow EW 15.40 (0.20) 15.36 (0.10) [Phys. Rev. D 88 (2013) 053005] \rightarrow LO HLbL 10.50 (2.60) 9.80 (2.60) [EPJ Web Conf. 118 (2016) 01016] \longrightarrow hadronic light-by-light scattering (HLbL) 7.20(4.31) 1911.08123, Lattice result! NLO HLbL all errors systematically controlled LO HVP **Consistent with previous result.** -9.82 (0.04) this work NLO HVP Fig. by Marc. NNLO HVP 1.24 (0.01) [Phys. Lett. B 734 (2014) 144] 11659182.80 (4.94) 11659182.05 (3.56) this work Theory total \rightarrow Experiment 11659209.10 (6.33) world avg 26.1 (8.0) 27.1 (7.3) this work Exp - Theory 3.3σ **3.7** σ this work Δa_{μ} (HVP: Hadronic Vacuum Polarization) (Numbers taken from KNT18, Phys. Rev. D97 (2018) 114025) (HLbL: Hadronic Light-by-Light) anomaly of man g-2


What kind of new physics you need?

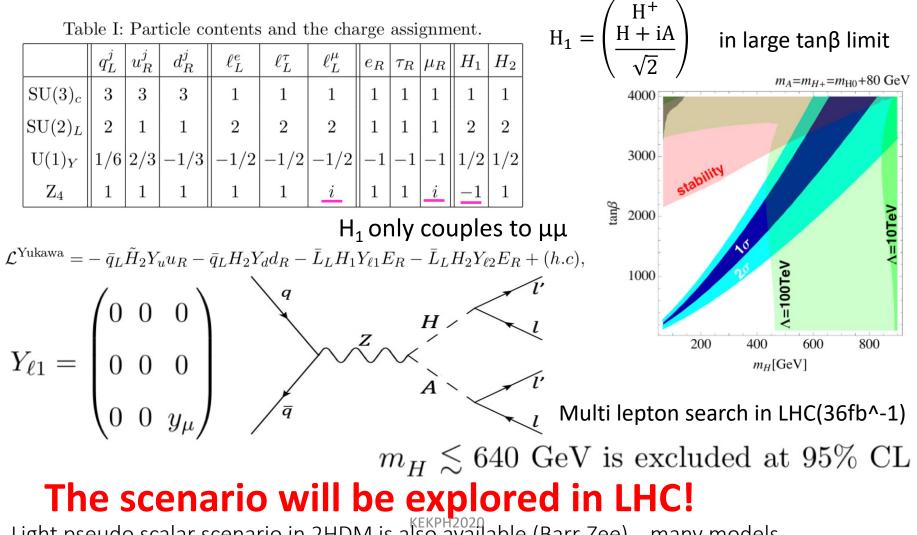
Naïve new physics scale to explain muon g-2 anomaly.

$$L \sim \frac{e\Delta a_{\mu}}{m_{\mu}} \mu_L \sigma^{\mu\nu} \mu_R F_{\mu\nu}$$

$$\int_{\mu} \int_{\chi} \int_{\chi}$$


What kind of new physics scenario is still allowed?

The scenario will be explored soon in Belle II!


Muon specific 2HDM is available. flavor conserving

1705.01469, Abe et al.

Muon specific 2HDM is available. flavor conserving

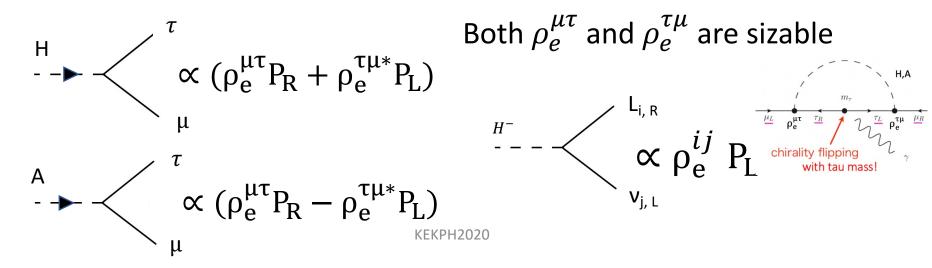
1705.01469

Light pseudo scalar scenario in 2HDM is also available (Barr-Zee) ...many models......

General Two Higgs Doublet Model (G2HDM)

We take so called Higgs base : a doublet acquires VEV

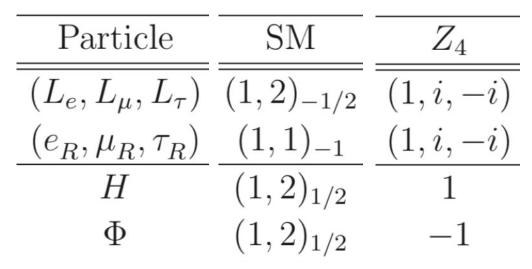
$$H_1 = \begin{pmatrix} G^+ \\ \frac{v+h+iG}{\sqrt{2}} \end{pmatrix}, H_2 = \begin{pmatrix} H^+ \\ \frac{H+iA}{\sqrt{2}} \end{pmatrix}$$


G⁺,G: N-G boson, H⁺ :charged Higgs, A : CP odd Higgs h: SM Higgs, H: heavy CP even Higgs (Alignment limit).

Yukawa terms

$$\begin{split} \mathcal{L}_{CC} &= -\sum_{f=u,d,e} \sum_{\Phi=h,H,A} y_{\Phi ij}^{f} \overline{f_{Li}} \ \Phi f_{Rj} + h.c. \\ &- \overline{\nu_{Li}} (V_{MNS}^{\dagger} \rho_{e})^{ij} H^{+} e_{Rj} + h.c. \\ &- \overline{u_{i}} (V_{CKM} \rho_{d} P_{R} - \rho_{u}^{\dagger} V_{CKM} P_{L})^{ij} H^{+} d_{j} + h.c., \\ y_{hij}^{f} &= \frac{m_{f}^{i}}{v} \delta_{ij}, \quad y_{Aij}^{f} &= \begin{cases} -\frac{i\rho_{f}^{ij}}{\sqrt{2}} \ \text{for } f = u \\ +\frac{i\rho_{f}^{ij}}{\sqrt{2}} \ \text{for } f = d, e, \end{cases} y_{Hij}^{f} &= -\frac{\rho_{f}^{ij}}{\sqrt{2}} \end{cases} \end{split}$$

Model: G2HDM Mass relation $m_{H}^{2} = m_{A}^{2} + \lambda_{5}v^{2}$, $m_{H^{-}}^{2} = m_{A}^{2} - \frac{\lambda_{4} - \lambda_{5}}{2}v^{2}$ $\stackrel{\lambda:quadratic couplings in a potencial$ Yukawa couplings between a neutral scalar and fermions $<math>\Phi=h,H,A$ f_{i} $g_{hij}^{f} = \frac{m_{i}^{i}}{v}$, $g_{Hij}^{f} = -\frac{\rho_{i}^{j}}{\sqrt{2}}$, $g_{Hij}^{f} = -\frac{\rho_{i}^{j}}{\sqrt{2}}$, f_{i} f_{i} $g_{Aij}^{f} = \begin{cases} -\frac{i\rho_{i}^{j}}{\sqrt{2}} \text{ for } f = u \\ +\frac{i\rho_{i}^{j}}{\sqrt{2}} \text{ for } f = d, e, \end{cases}$


Yukawa interactions relevant to muon g-2

More realistic model

Tsumura, Abe, Toma 1904.10908

 $\left(SU(3)_c, SU(2)_L\right)_{U(1)_Y}$

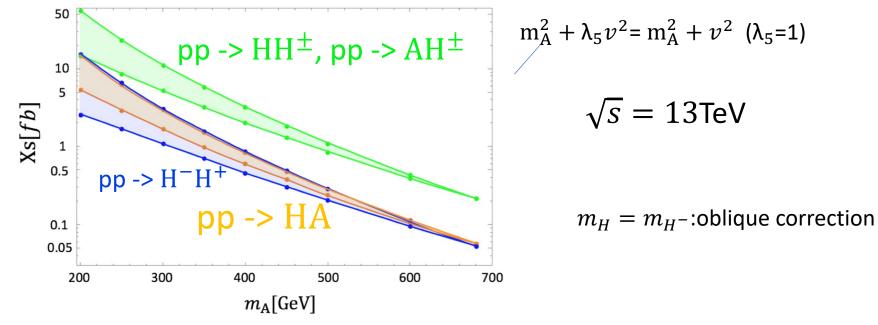
$$-\mathcal{L}_{Z_4}^{\text{yukawa}} = \overline{\ell_R} \begin{pmatrix} y_e H^{\dagger} & & \\ & y_{\mu} H^{\dagger} & \underline{y_{\mu\tau}} \Phi^{\dagger} \\ & & y_{\tau\mu} \Phi^{\dagger} & \overline{y_{\tau}} H^{\dagger} \end{pmatrix} L + \text{H.c.}$$

Additional scalars can only couple to $\mu\tau$

What kind of new physics you need?

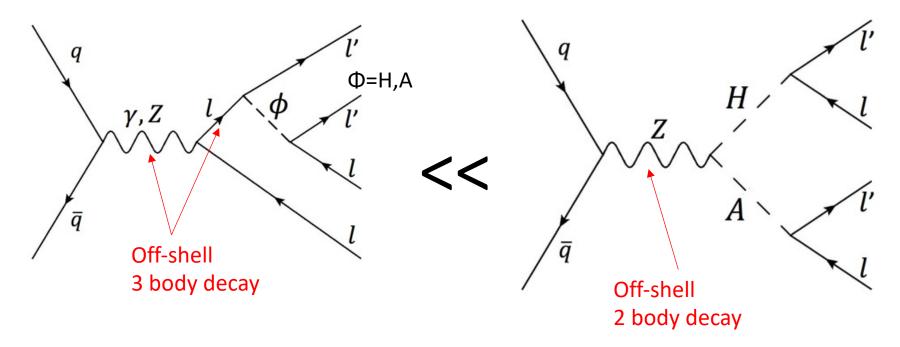
Naïve new physics scale to explain muon g-2 anomaly.

$$L \sim \frac{e\Delta a_{\mu}}{m_{\mu}} \mu_L \sigma^{\mu\nu} \mu_R F_{\mu\nu}$$


$$\int_{\mu} \int_{\chi} \int_{\chi}$$

What kind of new physics scenario is still allowed?

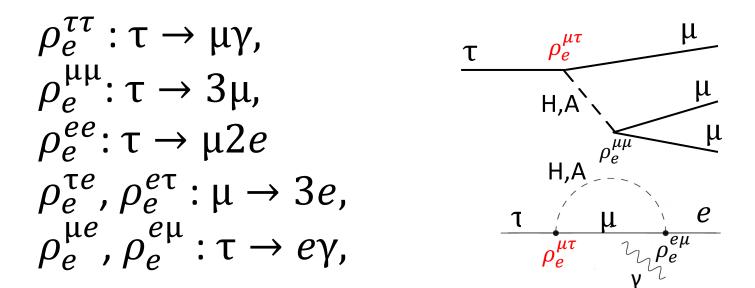
Electroweak production in LHC


• Maximum mass gap in H and A is given as $m_H^2 = m_A^2 + \lambda_5 v^2 = m_A^2 + v^2$ (λ_5 =1) • Minimum mass gap is given by $|\rho_e^{\mu\tau}|$, $|\rho_e^{\tau\mu}| < 1$. 50 $\sqrt{s} = 13$ TeV pp -> HH[±], pp -> AH[±] 10 5 $m_H = m_{H^-}$:oblique correction Xs[fb] $\Delta \alpha_{\mu} = 2.8 \times 10^{-9}$ 1 0.5 $pp -> H^{-}H^{+}$ 0.1 0.05 200 300 400 500 600 700 $m_{\rm A}[{\rm GeV}]$ A,H H+⁄ H, W H±∖ H^{-} **KEKPH2020**

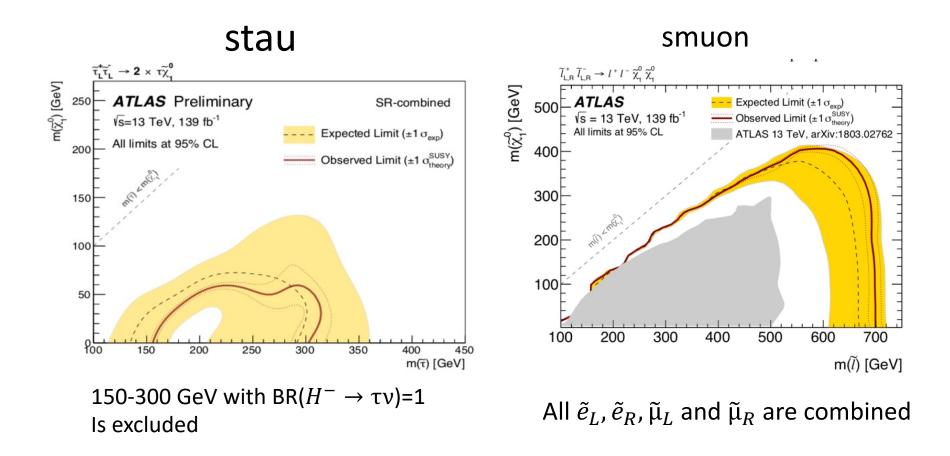
Electroweak production in LHC

Cross section itself is not huge. What is the most useful process? $pp \rightarrow HA \rightarrow \mu \overline{\tau} \mu \overline{\tau}$

$\mu\mu\overline{\tau}\overline{\tau}$ final state in LHC


Distinctive features of our signal

- 2 $\mu\tau$ LFV heavy resonances
- same sign lepton pairs


Other Yukawa couplings

 $\rho_e^{ij} = \begin{pmatrix} \rho_e^{ee} & \rho_e^{e\mu} & \rho_e^{e\tau} \\ \rho_e^{\mu e} & \rho_e^{\mu\mu} & \rho_e^{\mu\tau} \\ \rho_e^{\tau e} & \rho_e^{\tau\mu} & \rho_e^{\tau\tau} \end{pmatrix}$

Phenomenologically the other couplings should be small.

Higgs potential

$$V = M_{11}^2 H_1^{\dagger} H_1 + M_{22}^2 H_2^{\dagger} H_2 - \left(M_{12}^2 H_1^{\dagger} H_2 + \text{h.c.} \right) + \frac{\lambda_1}{2} (H_1^{\dagger} H_1)^2 + \frac{\lambda_2}{2} (H_2^{\dagger} H_2)^2 + \lambda_3 (H_1^{\dagger} H_1) (H_2^{\dagger} H_2) + \lambda_4 (H_1^{\dagger} H_2) (H_2^{\dagger} H_1) + \frac{\lambda_5}{2} (H_1^{\dagger} H_2)^2 + \left\{ \lambda_6 (H_1^{\dagger} H_1) + \lambda_7 (H_2^{\dagger} H_2) \right\} (H_1^{\dagger} H_2) + \text{h.c.}.$$

Mass relation

$$\begin{split} m_h^2 &\simeq \lambda_1 v^2, \\ m_H^2 &\simeq m_A^2 + \lambda_5 v^2, \\ m_{H^+}^2 &= m_A^2 - \frac{\lambda_4 - \lambda_5}{2} v^2, \end{split}$$