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Anomalous magnetic moment of leptons

◮ Electrons and Muons have magnetic moment along their spins, given by

~µ = g
e~

2m
~s

It is known that g-factor deviates from Dirac’s value (g = 2), and it is called

Anomalous magnetic moment

aℓ ≡ (g − 2)/2

It is much precisely measured for electron and muon.

◮ Electron g−2 is explained almost entirely by QED interaction between

electron and photons. It has been the most stringent test of QED and

the standard model.

◮ Muon g−2 is more sensitive to high energy physics, and thus a window to

new physics beyond the standard model.
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Anomalous magnetic moment of electron

◮ The precise measurements of electron and positron g−2 have been carried

out using Penning trap. Earlier measurement by Univ. of Washington group:

ae−(UW87) = 1 159 652 188.4 (43)× 10
−12 [3.7ppb]

ae+(UW87) = 1 159 652 187.9 (43)× 10
−12 [3.7ppb]

Van Dyck, Schwinberg, Dehmelt, PRL59, 26 (1987)

◮ The best measurement of electron g−2 is obtained by Harvard group, using

cylindrical Penning trap and quantum jump spectroscopy:

ae(HV08) = 1 159 652 180.73 (28)× 10
−12 [0.24ppb]
Hanneke, Fogwell, Gabrielse, PRL100, 120801 (2008)

Hanneke, Fogwell Hoogerheide, Gabrielse, PRA83, 052122 (2011)
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FIG. 2 (color). Cylindrical Penning trap cavity used to confine

a single electron and inhibit spontaneous emission.

◮ Further improvement of electron anomaly as well as new measurement of

positron is ongoing. Gabrielse, Fayer, Myers, Fan, Atoms 7 45 (2019)
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Anomalous magnetic moment of muon

◮ Experiments using muon storage ring started at CERN in 1960’s. The latest

experiment was conducted at BNL in E821 experiment.
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◮ Latest world average of the measured aµ:

aµ[exp] = 116 592 089 (63)× 10
−11

[0.54ppm]

Bennett, et al., Phys. Rev. D73, 072003 (2006)

Roberts, Chinese Phys. C 34, 741 (2010)

◮ New experiments are on-going at FermiLab and J-PARC, expecting O(0.1)

ppm. Muon g-2 collaboration (Grange et al.), arXiv:1501.06858 (2015)

Muon g-2/EDM at J-PARC (Abe et al.), PTEP 053C02 (2019)
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Standard Model prediction of ae

◮ Contributions to electron g−2 within the context of the standard model

consist of:

ae = ae(QED) + ae(Hadronic) + ae(Weak)

◮ QED contribution is further divided according to its lepton-mass

dependence through mass-ratio:

ae(QED) = A1︸︷︷︸
e,γ

+A2(me/mµ)︸ ︷︷ ︸
e,µ,γ

+A2(me/mτ )︸ ︷︷ ︸
e,τ,γ

+A3(me/mµ,me/mτ )︸ ︷︷ ︸
e,µ,τ,γ

◮ Each contribution is evaluated by perturbation theory:

Ai = A
(2)
i

(α
π

)
+ A

(4)
i

(α
π

)2

+ A
(6)
i

(α
π

)3

+ A
(8)
i

(α
π

)4

+ · · ·

These coefficients are calculated by using Feynman-diagram techniques.

Note that

(α
π

)4

≃ 29.1 × 10
−12,

(α
π

)5

≃ 0.07 × 10
−12.
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QED contribution: Diagrams

◮ There is one vertex diagram contributing to 2nd order term:

◮ 4th order term comes from 7 Feynman diagrams:

◮ 6th order term receives contributions from 72 Feynman diagrams,

represented by these five types:

◮ There are 891 Feynman diagrams contributing to 8th order term. They are

classified into 13 gauge-invariant groups.

I(a) I(b) I(c) I(d) II(a) II(c)II(b)

III IV(a) IV(b) IV(c) IV(d) V
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QED contribution: Summary

Coefficient A
(2n)
i

Value (Error) References

A
(2)
1 0.5 Schwinger 1948

A
(4)
1 −0.328 478 965 579 193 · · · Petermann 1957, Sommerfield 1958

A
(4)
2 (me/mµ) 0.519 738 676 (24)×10−6 Elend 1966

A
(4)
2 (me/mτ) 0.183 790 (25)×10−8 Elend 1966

A
(6)
1 1.181 241 456 587 · · · Laporta-Remiddi 1996, Kinoshita 1995

A
(6)
2 (me/mµ) −0.737 394 164 (24)×10−5 Samuel-Li, Laporta-Remiddi, Laporta

A
(6)
2 (me/mτ) −0.658 273 (79)×10−7 Samuel-Li, Laporta-Remiddi, Laporta

A
(6)
3 (me/mµ, me/mτ) 0.1909 (1)×10−12 Passera 2007

A
(8)
1 −1.912 245 764 · · · Laporta 2017, AHKN 2015

A
(8)
2 (me/mµ) 0.916 197 070 (37)×10−3 Kurz et al 2014, AHKN 2012

A
(8)
2 (me/mτ) 0.742 92 (12)×10−5 Kurz et al 2014, AHKN 2012

A
(8)
3 (me/mµ, me/mτ) 0.746 87 (28)×10−6 Kurz et al 2014, AHKN 2012

A
(10)
1 6.737 (159) AKN 2018,2019

A
(10)
2 (me/mµ) −0.003 82 (39) AHKN 2012,2015

A
(10)
2 (me/mτ) O(10−5)

A
(10)
3 (me/mµ, me/mτ) O(10−5)

All terms up to 8th order are well-known. 10th order term is obtained numerically.
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QED contribution: 8th order term

◮ Mass-independent term A
(8)
1

◮ Near-analytic very precise result by Laporta (up to 1100 digits)

−1.9122457649264455741526471674 . . . Laporta, PLB772, 232 (2017)

◮ Alternative semi-analytic result

−1.87(12) Marquad et al, arXiv:1708.07138

◮ Numerical result

−1.91298(84) AHKN, PRL109, 111809 (2012); PRD91, 033006 (2015)

◮ Mass-dependent terms A
(8)
2 and A

(8)
3

◮ Numerical evaluation. AHKN, PRL109, 111809 (2012)

◮ Analytic calculation by the series expansion in mass-ratio me/mℓ ≪ 1.

Kurz et al. PRD93, 053017 (2016)

Analytic Numerical

A
(8)
2

(me/mµ) 0.916 197 070 (37)× 10−3 0.9222 (66)× 10−3

A
(8)
2

(me/mτ ) 0.742 92 (12)× 10−5 0.738 (12)× 10−5

A
(8)
3

(me/mµ,me/mτ ) 0.746 87 (28)× 10−6 0.7465 (18)× 10−6

◮ Now the 8th order term is well-known.
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QED contribution: 10th order term
◮ Numerical evaluation of the complete 10th order contribution was reported

in 2012 and an updated result was published in 2015. Latest value is:

A
(10)
1 = 6.737 (159)

◮ Contribution to A
(10)
1 mainly comes from Set V that consists of 6354 vertex

diagrams without closed lepton loops.

Recently, Volkov announced their result by an independent numerical

method.

A
(10)
1 [Set V] =

{
7.668 (159) AKN, Atoms, 7, 28 (2019)

6.793 (90) Volkov, PRD100, 096004 (2019)

Difference −0.87 (18) [4.8σ] does not affect seriously in the current

precision.

◮ Mass-dependent term is also evaluated:

A
(10)
2 (me/mµ) = −0.003 82 (39)

tau-lepton contribution is negligibly small for the current experimental

precision.
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Fine Structure Constant α

◮ To obtain the theoretical prediction of ae, we need a value of the

fine-structure constant α determined independent of QED.

◮ Two high-precision values of α are obtained from the measurement of

h/m(X ) of the Rb and Cs by the atom interferometer through the relation:

α−1 =

[
2R∞

c

Ar (X )

Ar (e)

h

m(X )

]−1/2

where

◮ R∞ the Rydberg constant
◮ Ar (X ) relative atomic mass of an atom X
◮ m(X ) mass of an atom X

It leads to

α−1(Rb) = 137.035 998 995 (85) [0.62ppb] Bouchendira et al, PRL106, 080801 (2011)

α−1(Cs) = 137.035 999 046 (27) [0.20ppb] Parker et al, Science, 360, 191 (2018)
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Theoretical Prediction of ae

◮ Using α(Cs) and including the hadronic and weak contributions, the

theoretical prediction of ae becomes:

QED mass-independent mass-dependent sum

2nd 1 161 409 733.21 (23) 0 1 161 409 733.21 (23)
4th −1 772 305.063 85 (70) 2.814 1613 (13) −1 772 302.249 69 (70)
6th 14 804.203 6740 (88) −0.093 240 76 (10) 14 804.110 4333 (88)
8th −55.667 989 379 (44) 0.026 909 719 (35) −55.641 079 660 (56)
10th 0.456 (11) −0.000 258 (26) 0.455 (11)

ae(QED) 1 159 652 177.14 (23) 2.747 5720 (14) 1 159 652 179.88 (23)

Weak

ae(weak) 0.030 53 (23)

Hadron

VP LO 1.849 (10)
VP NLO −0.2213 (11)
VP NNLO 0.027 99 (17)
LbyL 0.037 (5)

ae(hadron) 1.693 (12)

ae(theory) 1 159 652 181.61 (23)
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Theoretical Prediction of ae

◮ We obtain the theoretical prediction of ae as

ae(theory: α(Rb)) = 1 159 652 182.037 (720)(11)(12)× 10
−12

ae(theory: α(Cs)) = 1 159 652 181.606 (229)(11)(12)× 10
−12

where uncertainties are due to fine-structure constant α, QED 10th order,

and hadronic contribution.

◮ The measurement of ae is

ae(expt.) = 1 159 652 180.73 (28)× 10
−12

◮ The differences between theory and measurement are

ae(expt.)− ae(theory: α(Rb)) = −1.31 (77)× 10
−12 [1.7σ]

ae(expt.)− ae(theory: α(Cs)) = −0.88 (36)× 10
−12 [2.4σ]
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Muon g−2: QED contribution

◮ What distinguishes ae(QED) and aµ(QED) is the mass-dependent

component.

◮ Light lepton loop contribution yields large logarithmic enhancement involving

a factor ln (me/mµ).

◮ Vacuum polarization loop:

2

3
ln(mµ/me)−

5

9
≃ 3.

µ

e

◮ Light-by-light scattering loop:

2

3
π2

ln(mµ/me) ≃ 35.

6th-order l-by-l effect is important.

c.f. Aldins, Kinoshita, Brodsky, Dufner, PRL8, 441 (1969)

µ

e

◮ Therefore, the sets of diagrams giving the leading contribution can be

identified and were evaluated in the earlier stage.

The entire contribution including non-leading diagrams have been evaluated.
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Muon g−2: QED contribution
◮ aµ(QED) is known up to 10th order. Their values contributing to

mass-dependent terms are:

A2(mµ/me) A2(mµ/mτ ) A3(mµ/me,mµ/mτ )

4th 1.094 258 3093 (76) 0.000 078 076 (11) —

6th 22.868 379 98 (20) 0.000 360 671 (94) 0.000 527 738 (75)

8th 132.685 2 (60) 0.042 4941 (53) 0.062 722 (10)

10th 742.32 (86) −0.0656 (45) 2.011 (10)

Elend, PL20, 682 (1966); Samuel and Li, PRD44, 3935 (1991); Li, Mendel and Samuel, PRD47, 1723 (1993)

Laporta, Nuovo Cim. A106, 675 (1993); Laporta and Remiddi, PLB301, 440 (1993); Czarnecki and Skrzypek, PLB449, 354 (1999)

Laporta, PLB312, 495 (1993); Kinoshita and Nio, PRD70, 113001 (2004); Kurz, Liu, Marquard, Steinhauser, NPB879, 1 (2014)

Laporta, PLB328, 522 (1994); Kinoshita and Nio, PRD73, 053007 (2006)

TA, Hayakawa, Kinoshita, Nio, Watanabe, PRD78, 053005 (2008)

TA, Asano, Hayakawa, Kinoshita, Nio, Watanabe, PRD81, 053009 (2010)

TA, Hayakawa, Kinoshita, Nio, PRD78, 113006 (2008); 82, 113004 (2010); 83, 053002 (2011)

83, 053003 (2011); 84, 053003 (2011); 85, 033007 (2012); 85, 093013 (2012)

◮ Together with the mass-independent term A1, we obtain:

aµ(QED : α(Cs)) = 116 584 718.931 (7) (17) (6) (100) (23) [104]× 10
−11

aµ(QED : α(ae)) = 116 584 718.842 (7) (17) (6) (100) (28) [106]× 10
−11

(mass ratio)(8th)(10th)(12th)(α)[combined]
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Muon g−2: theory
◮ The standard model contributions are summarized as follows: (in unit of

10−10)
KNT19 DHMZ19 J18

aµ(had. vp. LO) 692.78 ± 2.42 693.9 ± 4.0 688.07 ± 4.14
aµ(had. vp. NLO) −9.83 ± 0.04 −9.87 ± 0.01 −9.93 ± 0.07
aµ(had. vp. NNLO) 1.24 ± 0.01 1.24 ± 0.01 1.22 ± 0.01

aµ(had. LbL) 10.5 ± 2.6

aµ(weak) 15.36 ± 0.10

aµ(QED) 11 658 471.89 ± 0.01
Keshavarzi, Nomura, Teubner, arXiv:1911.00367

Davier, Hoecker, Malaescu, Zhang, arXiv:1908.00921

Jegerlehner, EPJ Web Conf. 166, 00022 (2018)

Prades, de Rafael, Vainshtein, Adv. Ser. Direct. High Energy Phys. 20, 303 (2009)

Czarnecki, Marciano, Vainshtein, PRD67, 073006 (2003)

Gnendiger, Stöckinger, Stöckinger-Kim, PRD88, 053005 (2013)

Ishikawa, Nakazawa, Yasui, PRD99, 073004 (2019)

◮ The standard model prediction of muon g−2:

a
exp
µ − aSM

µ

11 659 181.1 ± 3.8 × 10−10 KNT19 27.1 ± 7.3 [3.7σ]

11 659 183.0 ± 4.8 × 10−10 DHMZ19 26.1 ± 7.9 [3.3σ]

11 659 177.6 ± 4.4 × 10−10 J18 31.3 ± 7.7 [4.1σ]

11 659 208.9 ± 6.3 × 10−10 exp
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Muon g−2: theory

Keshavarzi, Nomura, Teubner, arXiv:1911.00367
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Numerical evaluation of QED 10th order term
◮ 12 672 Feynman diagrams contribute to 10th order term.

They are classified into 32 gauge invariant sets within 6 supersets.

I(a) I(b) I(c) I(d) I(e)

I(f) I(g) I(h) I(i) I(j)

II(a) II(b) II(c) II(d) II(e)

II(f) III(a) III(b) III(c) IV

V VI(a) VI(b) VI(c) VI(d) VI(e)

VI(f) VI(g) VI(h) VI(i) VI(j) VI(k)

Most difficult is Set V that consists of 6354 diagrams w/o lepton loops. 16/34



Magnetic moment contribution

◮ Magnetic property of lepton can be studied through examining its scattering

by a static magnetic field.

The amplitude can be represented as:

eū(p′′)

[
γµ

F1(q
2) +

i

2m
σµν

qν F2(q
2)

]
u(p′)A

e
µ(~q)

p′p′′

q

◮ The anomalous magnetic moment is the static limit of the magnetic form

factor F2(q
2):

aℓ = F2(0) = Z2M, M = lim
q2→0

Tr(Pν(p, q)Γ
ν)

where Γν is the proper vertex function with the external lepton on the mass

shell, and Pν(p, q) is the magnetic projection operator.
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Numerical Approach

◮ Amplitude is given by an integral over loop momenta according to

Feynman-Dyson rule.

It is converted into Feynman parametric integral over {zi}. Momentum

integration is carried out analytically that yields

M
(2n)
G

=

(
−

1

4

)n

Γ(n − 1)

∫
(dz)G

[
F0

U2V n−1
+

F1

U3V n−2
+ · · ·

]

◮ Integrand is expressed by a rational function of terms called building blocks,

U, V , Bij , Aj , and Cij .

Building blocks are given by functions of {zi}, reflecting the topology of

diagram, flow of momenta, etc.

◮ A set of vertex diagrams Λ obtained by inserting an external vertex

into each lepton line of self-energy diagram Σ can be related by

Ward-Takahashi identity.

Λν(p, q) ≃ −qµ
∂Λµ(p, q)

∂qν

∣∣∣∣
q→0

−
∂Σ(p)

∂pν
.

For 10th order Set V, the number of independent integrals reduces to 1/9.
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Subtraction of UV Divergences

◮ UV divergence occurs when loop momenta in a subdiagram go to infinity. It

corresponds to the region of Feynman parameter space zi ∼ O(ǫ) for i ∈ S.
G S

◮ In order to carry out subtraction numerically, the singularities are cancelled

point-by-point on Feynman parameter space.

MG − LSMG/S −→

∫
(dz)G

[
mG −KSmG

]

◮ The subtraction integrand KSmG is derived from mG by simple

power-counting rule called K-operation. Cvitanović and Kinoshita, 1974

◮ By construction, subtraction terms can be factorized into (UV-divergent part

of) renormalization constant and lower-order magnetic part.

∫
(dz)G

[
KSmG

]
= L

UV
S MG/S

LUV
S is the leading UV-divergent part of LS .
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IR subtraction Scheme
◮ A diagram may have IR divergence when some momenta of photon go to

zero. It is really divergent by “enhancer” leptons that are close to on-shell by

kinematical constraint.

enhan
ers

k! 0

S

◮ We adopt subtraction approach for these divergences point-by-point on

Feynman parameter space.

◮ There are two types of sources of IR divergence in MG associated with a

self-energy subdiagram. To handle these divergences, we introduce two

subtraction operations:

◮ R-subtraction to remove the residual self-mass term

RSMG = δ̃mSMG/S(i∗)

◮ I-subtraction to subtract remaining logarithmic IR divergence

ISMG = L̃G/S(k)MS
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Step-by-step example with 4th-order diagrams : Step 1
◮ Let us illustrate the steps by simpler case,

e.g. 4th-order diagrams.

◮ There are 7 diagrams of 4th order;

6 of them have no closed lepton loop (q-type).

◮ They are WT-sumed into 2 self-energy-like diagrams, 4a and 4b.

4a

4b
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Step 2: Amplitude

◮ Introduce Feynman parameters z1, . . . , z5 to propagators:

z1 z2 z3

z4 z5

◮ Anomalous magnetic moment M4a is converted analytically into the form:

M4a =

∫
(dz) F4a =

∫
(dz)

[E0 + C0

U2V
+

N0 + Z0

U2V 2
+

N1 + Z1

U3V

]

where integrand and building blocks are given as follows:

(dz) = dz1dz2dz3dz4dz5δ(1 − z12345)

B11 = z235, B12 = z35, B13 = −z2,

B23 = z14, B22 = z1345, B33 = z124,

U = z2B12 + z14B11,

Ai = 1 − (z1B1i + z2B2i + z3B3i )/U,

G = z1A1 + z2A2 + z3A3, V = z123 − G,

zijk··· = zi + zj + zk + · · · .

E0 = 8(2A1A2A3 − A1A2 − A1A3 − A2A3)

C0 = −24Z4Z5/U

N0 = G(E0 − 8(2A2 − 1))

Z0 = 8z1(−A1 + A2 + A3 + A1A2 + A1A3 − A2A3)

+8z2(1 − A1A2 + A1A3 − A2A3 + 2A1A2A3)

+8z3(A1 + A2 − A3 − A1A2 + A1A3 + A2A3)

N1 = 8G(B12(2 − A3) + 2B13(1 − 2A2) + B23(2 − A1))

Z1 = −8z1(B12(1 − A3) + B13 + B23A1)

+8z2(B12(1 − A3) − 4B13A2 + B23(1 − A1))

−8z3(B12A3 + B13 + B23(1 − A1))
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Step 3: UV subtraction

◮ M4a is not well-defined — it has UV divergences when the loop momenta

goes to infinity.

◮ This corresponds to a region of zi ’s when all zi on the loop vanish

simultaneously.

◮ We prepare an integral which has the same UV divergent profile by

K-operation, and perform subtraction point-by-point on the integrand.

x y

x y
M2

L̂2

FM4a
K23FM4a

◮ Then the finite part of the anomalous magnetic moment ∆M4a is obtained by

the integral:

∆M4a =

∫
(dz)

[
F4a−K12F4a−K23F4a

]
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Step 4: IR subtraction

◮ M4b has IR divergence as well, from vanishing of virtual photon momentum.

◮ This logarithmic IR divergence is handled by an integral which is

constructed by I-subtraction.

◮ Then the finite part of the anomalous magnetic moment ∆M4b is obtained by

the integral:

∆M4b =

∫
(dz)

[
F4b−K22F4b−I13F4b

]

x y x

y

x y x

y
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Step 5: Residual renormalization

◮ Finite part of amplitude is given in terms of integral with appropriate UV

and/or IR subtraction terms.

∆M4a =

∫
(dz)

[
F4a−K12F4a−K23F4a

]

∆M4b =

∫
(dz)

[
F4b−K22F4b−I13F4b

]

◮ Subtraction terms are analytically factorized into products of lower-order

quantities.

= M4a−L̂2M2 − L̂2M2

= M4b−(δm2M2⋆ + B̂2M2)−L̃2M2

◮ Standard on-shell renormalization is denoted by

a
(4)[q-type] = M4a − 2L2M2

+M4b − (δm2M2⋆ + B2M2)

a
(4)[q-type] = (∆M4a +∆M4b)−∆LB2 M2

◮ By substitution, magnetic moment is given

where ∆LB2 is finite part of L2 + B2.
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Amplitude as a finite integral

◮ Finite amplitude ∆MG free from both UV and IR divergences is obtained by

Feynman-parameter integral as:

∆MG =

∫
(dz)

[
FG

+
∑

f

∏

S∈f

(−KS)FG

f : Zimmermann’s forests:
combinations of UV divergent subdiagrams.

+
∑

f̃

(−ISi
) · · · (−RSj

) · · ·FG

]

f̃ : annotated forests:
combinations of self-energy subdiagrams
with distinction of I-/R-subtractions.

unrenormalized

amplitude

UV subtraction terms

IR subtraction terms
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Residual renormalization

◮ We adopt the standard on-shell renormalization to ensure that the coupling

constant α and the electron mass me are the ones measured by

experiments.

◮ The sum of all these finite integrals defined by K-operation and

I-/R-subtraction operations does not correspond to physical contribution to

g − 2.

◮ The difference is adjusted by the step called the residual renormalization.

ae = M(bare) − on-shell renormalization

=
[
M(bare) − UV subtr. − IR subtr.

]

︸ ︷︷ ︸
Finite integral ∆M

+
[
−on-shell renorm. + UV subtr. + IR subtr.

]

︸ ︷︷ ︸
finite residual renormalization
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Deriving residual renormalization

◮ Sum up over 389 integrals of 10th order Set V, which requires analytic sum

of ∼ 16,000 symbolic terms.

◮ The physical contribution from 10th order Set V is given as:

A
(10)
1 [Set V] = ∆M10[Set V]

+ ∆M8(−7∆LB2)

+ ∆M6{−5∆LB4 + 20(∆LB2)
2}

+∆M4{−3∆LB6 + 24∆LB4∆LB2 − 28(∆LB2)
3 + 2∆L2∗∆dm4}

+ M2{−∆LB8 + 8∆LB6∆LB2 − 28∆LB4(∆LB2)
2

+ 4(∆LB4)
2 + 14(∆LB2)

4 + 2∆dm6∆L2∗}

+ M2∆dm4(−16∆L2∗∆LB2 +∆L4∗ − 2∆L2∗∆dm2∗),

◮ The terms with ∆ are the finite nth order quantities.
◮ ∆Mn, M2: finite magnetic moment.
◮ ∆LBn: sum of vertex and wave-function renormalization constants.
◮ ∆dmn: mass-renormalization constants.
◮ ∆L∗

n , ∆dm∗
n : ∗ denotes mass insertion.
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Construction of numerical integration code
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Construct subtraction terms

Numerical
integration code

◮ We need to evaluate a large number of Feynman diagrams.

It should be error-prone by writing numerical integration code for these huge

integrals by hand. We developed an automated code-generating program.

◮ “gencodeN” takes a single-line information that represents a diagram, and

generates numerical integration code in FORTRAN.

◮ These integrals are evaluated on computers using numerical integration

routines.

AHKN, NPB740, 138 (2006); NPB796, 184 (2008)
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Numerical integration

◮ Multi-dimensional integral

◮ The amplitude is expressed as a 14 − 1 dimensinal integral for 10th

order diagrams.
◮ The integrands are huge. (approx. O(105) FORTRAN lines for each

integral.)

◮ Digit-deficiency problem

◮ The point-by-point subtraction suffers from severe digit-deficiency

problem by rounding-off of floating-point numbers.

We employ extended numerical precision arithmetic using

double-double and quadruple-double of qd library.

Bailey, Hida, Li. c.f. http://crd.lbl.gov/˜dhbailey/mpdist/

◮ Sharp peaks

◮ Integrands have sharp peaks due to divergences, and therefore

requires robust integration method.

We employ VEGAS, an adaptive-iterative Monte-Carlo integration

algorithm.

Lepage, J.Comput.Phys.27, 192 (1978)

A new version of VEGAS: https://github.com/gplepage/vegas
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Numerical checks of Set V integrals

◮ 13 integration variables in [0, 1]D are mapped to 14 Feynman parameters.

Any mapping should yield the same result.

◮ As a cross check, we performed integrals with different mappings. They are

regarded as independent evalations.

◮ Numerical results are in good agreement.

List of results that exhibit relatively large differences:

Diagram Expression Results Results Difference Weighted

in 2015 in 2017 average

X141 abbcadedec −12.5567 (350) −12.4879 (207) −0.0688 −12.5057 (178)

X113 abacddeebc −4.3847 (322) −4.4412 (176) 0.0565 −4.4282 (155)

X100 abacdcdeeb −15.2919 (331) −15.2360 (203) −0.0559 −15.2513 (173)

X256 abccdeedba −14.0405 (342) −13.9856 (194) −0.0549 −13.9990 (169)

X146 abbcdadeec −2.2990 (335) −2.2458 (202) −0.0532 −2.2600 (173)

X075 abacbddeec −8.1138 (340) −8.0608 (195) −0.0531 −8.0739 (169)

X144 abbccdedea 23.7239 (368) 23.6713 (189) 0.0526 23.6823 (168)

X252 abccdedeab −10.9091 (343) −10.8565 (179) −0.0526 −10.8677 (158)

X236 abcbdedcea 2.0560 (180) 2.1072 (205) −0.0512 2.0782 (135)

X325 abcdceedba 11.5958 (343) 11.5456 (198) 0.0503 11.5582 (172)

X158 abbcdeceda 0.4607 (329) 0.4106 (206) 0.0502 0.4247 (174)

AKN, PRD97, 036001 (2018)

31/34



12th order contribution?

◮ There are 202,770 vertex Feynman diagrams contributing to 12th order. The

Feynman-parametric integral involves 16 dimensional numerical integration,

each combinatorially more complicated than those of 10th order.

◮ Consider that
(α
π

)6

∼ O(10−16), and the present uncertainty of ae is of

O(10−13), it is not likely that 12th-order contribution is needed for the time

being.

◮ In view of rather large values of A2(mµ/me) for muon g−2, one might

wonder how much the twelfth order contribution.

◮ The leading contribution will come from three insertions of

2nd-order vacuum-polarization loop into the 6th-order light-

by-light diagram. It is estimated as:

∼ (6th light-by-light)×(2nd VP)3×10×
(α
π

)6

∼ 0.08 × 10
−11.

It is larger than the uncertainty of 10th order term. A crude evaluation may

be desirable.
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Fine Structure Constant α from ae

◮ From the measurement and the theory of electron g−2, the value of

fine-structure constant can be determined.

ae = A(2)
(α
π

)
+ A(4)

(α
π

)2

+ A(6)
(α
π

)3

+ A(8)
(α
π

)4

+ A(10)
(α
π

)5

+ · · ·

+(small contributions)

Theoretical calculations

Experimental value

◮ Newly obtained value of fine-structure constant is:

α−1(ae) = 137.035 999 1496 (13)(14)(330) [0.24ppb]

AKN, Atoms, 7, 28 (2019)

◮ The differences in α from the atomic recoil determinations are

α−1(ae)− α−1(Rb) = 0.155 (91)× 10
−6 [1.7σ],

α−1(ae)− α−1(Cs) = 0.104 (43)× 10
−6 [2.4σ].

(α5) (had) (exp)
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Summary

◮ QED contribution to electron g−2 up to 8th order has been firmly

established. The 10th order term has been evaluated by extensive

numerical calculation.

◮ QED contributions are now ready for the on-going new measurements of

electron and position g−2, and muon g−2.

◮ Electron g−2 provides one of most precise determinations of fine structure

constant α.

◮ With the improved value of the fine-structure constant α, it seems that a

small discrepancy between the measurement and the theory of electron

g−2 may be reveiled. Whether it is significant or not will wait for further

improvements.
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