

Hadron and Nuclear Physics for Oscillation Experiments

Luis Alvarez Ruso

Introduction

 ν cross sections are crucial to achieve the precision goals of oscillation experiments

$$\frac{\int \sigma(E'_{\nu}) \Phi(E'_{\nu}) P(E_{\nu}|E'_{\nu}) P(E'_{\nu}) P(E'_{\nu}) P(E'_{\nu}) D(E'_{\nu}) dE'_{\nu}}{\int \sigma(E'_{\nu}) \Phi(E'_{\nu}) P(E'_{\nu}) D(E'_{\nu}) dE'_{\nu}}$$

Need for theory?

N

 \overline{N}

- Measurements are not (cannot be) comprehensive
 - the same (semi)-inclusive cross section can correspond to different exclusive final states, depending on the reaction mechanism
 - measurements (partially) rely on simulations ~ theory to determine efficency, acceptance, ...
- **E**_{ν} is not known: reconstructed using kinematics and/or calorimetry
- $\sigma(\nu_{\mu})$ to $\sigma(\nu_{e})$ extrapolations
- Neutrino c.s. mismodeling could lead to unacceptably large systematic uncertainties or biased measurements

F. Sanchez @ NuPhys2015

Nucleon axial form factor

Fundamental nucleon property

Main source of uncertainty for QE scattering on nucleons:

$$\begin{array}{cccc}
\operatorname{CCQE} : \nu(k) + n(p) & \rightarrow & l^{-}(k') + p(p') \\
& \bar{\nu}(k) + p(p) & \rightarrow & l^{+}(k') + n(p') \\
\operatorname{NCE} : \nu(k) + N(p) & \rightarrow & \nu(k') + N(p') \\
& \bar{\nu}(k) + N(p) & \rightarrow & \bar{\nu}(k') + N(p') \\
\end{array}$$

Largest contribution at T2K, MicroBooNE
 Used for kinematic E_µ reconstruction:

$$E_{\nu}^{\text{QE}} = \frac{2m_n E_{\mu} - m_{\mu}^2 - m_n^2 + m_p^2}{2(m_n - E_{\mu} + p_{\mu}\cos\theta_{\mu})}$$

Input in models of non-resonant inelastic reactions (meson production) and two-nucleon currents

L. Alvarez-Ruso, IFIC

Nucleon axial form factor

What is known:

■ $F_A(0) = g_A \leftarrow \beta$ decay ■ $F_A(\infty) \sim Q^{-4} \leftarrow QCD$

Main source of information: bubble chamber (ANL, BNL, FNAL) data

Dipole ansatz: Bodek et al., EPJC 53 (2008) $F_A(Q^2) = g_A \left(1 + \frac{Q^2}{M_A^2}\right)^{-2} \qquad \langle r_A^2 \rangle = \frac{12}{M_A^2}$

- **z-expansion:** Meyer et al., PRD 93 (2016)
- Neural networks + Bayesian statistics: LAR, Graczyk, Saúl-Sala, PRC 99 (2019)
- All methods obtain similar F_A (Q²)...

Nucleon axial form factor

What is known:

■ $F_A(0) = g_A \leftarrow \beta$ decay ■ $F_A(\infty) \sim Q^{-4} \leftarrow QCD$

Main source of information: bubble chamber (ANL, BNL, FNAL) data

Dipole ansatz: Bodek et al., EPJC 53 (2008) $F_A(Q^2) = g_A \left(1 + \frac{Q^2}{M_A^2}\right)^{-2} \qquad \langle r_A^2 \rangle = \frac{12}{M_A^2}$

$$< r_A^2 > = 0.453(12) \text{ fm}^2$$

z-expansion: Meyer et al., PRD 93 (2016)

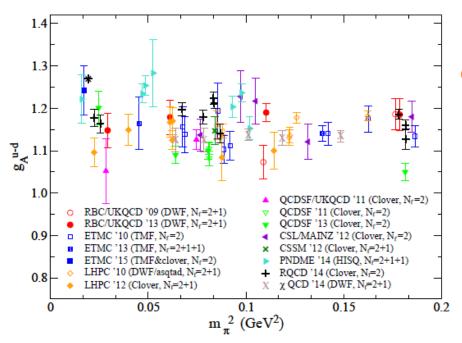
 $< r_A^2 > = 0.46(22) \text{ fm}^2$

Neural networks + Bayesian statistics: LAR, Graczyk, Saúl-Sala, PRC 99 (2019)

 $< r_A^2 > = 0.471(15) \text{ fm}^2 \leftarrow \text{ANL only so far}$

- All methods obtain similar F(Q²)...
 - ... but with different errors

QE scattering on the nucleon


z-expansion Meyer et al., PRD 93 (2016)

- At $E_{\nu} \sim 1 \text{ GeV } \sigma$ (CCQE) has $\approx 10 \%$ error
- More precise information about F_A is needed
 Direct or indirect CCQE measurement on n/p
 - Lattice QCD

F_A & LQCD

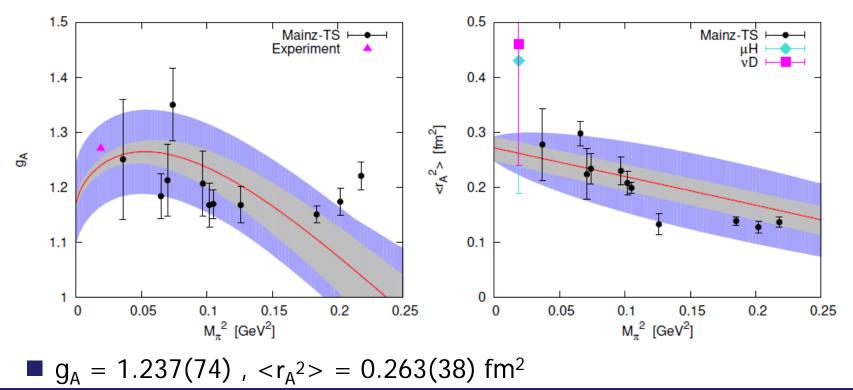
g_A : lower than exp. values have been recurrently obtained

Constantinou, PoS CD15 (2015) 009

Recent progress:

improved algorithms for a careful treatement of excited states

Iow pion masses


F_A & LQCD

Recent progress:

Alexandrou et al., PRD 96 (2017) Capitani et al., arXiv:1705.06186 Gupta et al., PRD 96 (2017)

Baryon ChPT analysis: Yao, LAR, Vicente Vacas, PRD 96 (2017)

■ O(p³), Q² < 0.36 GeV², 130 MeV < M_{π} < 473 MeV, explicit Δ (1232)

L. Alvarez-Ruso, IFIC

JPARC Symposium 2019

F_A & LQCD

Recent progress:

Alexandrou et al., PRD 96 (2017) Capitani et al., arXiv:1705.06186 Gupta et al., PRD 96 (2017)

More recent progress:

A percent-level determination of the nucleon axial coupling from QCD

Chang et al., Nature 558 (2018)

Nucleon form factors at low Q² at the physical point Shintani et al., PRD 99 (2019)

 $\nu_l N \to l \pi N'$

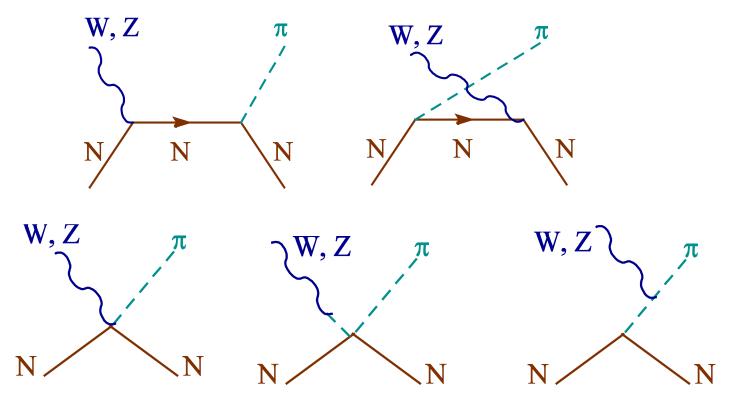
• CC:
$$\nu_{\mu} p \rightarrow \mu^{-} p \pi^{+}, \quad \overline{\nu}_{\mu} p \rightarrow \mu^{+} p \pi^{-}$$

 $\nu_{\mu} n \rightarrow \mu^{-} p \pi^{0}, \quad \overline{\nu}_{\mu} p \rightarrow \mu^{+} n \pi^{0}$
 $\nu_{\mu} n \rightarrow \mu^{-} n \pi^{+}, \quad \overline{\nu}_{\mu} n \rightarrow \mu^{+} n \pi^{-}$

source of CCQE-like events (in nuclei)

needs to be subtracted for a good E_{ν} reconstruction

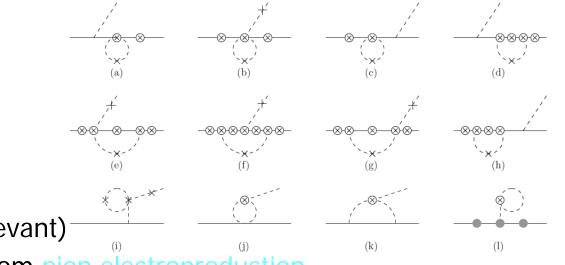
$$\begin{array}{l} \text{NC:} \quad \nu_{\mu} \, p \to \nu_{\mu} \, p \, \pi^{0}, \qquad \overline{\nu}_{\mu} \, p \to \overline{\nu}_{\mu} \, p \, \pi^{0} \\ \nu_{\mu} \, p \to \nu_{\mu} \, n \, \pi^{+}, \qquad \overline{\nu}_{\mu} \, n \to \overline{\nu}_{\mu} \, n \, \pi^{0} \\ \nu_{\mu} \, n \to \nu_{\mu} \, n \, \pi^{0}, \qquad \overline{\nu}_{\mu} \, n \to \overline{\nu}_{\mu} \, n \, \pi^{0} \\ \nu_{\mu} \, n \to \nu_{\mu} \, p \, \pi^{-}, \qquad \overline{\nu}_{\mu} \, n \to \overline{\nu}_{\mu} \, p \, \pi^{-} \end{array}$$


 \blacksquare e-like background to $u_{\mu}
ightarrow
u_{e}$ (T2K, NOvA)

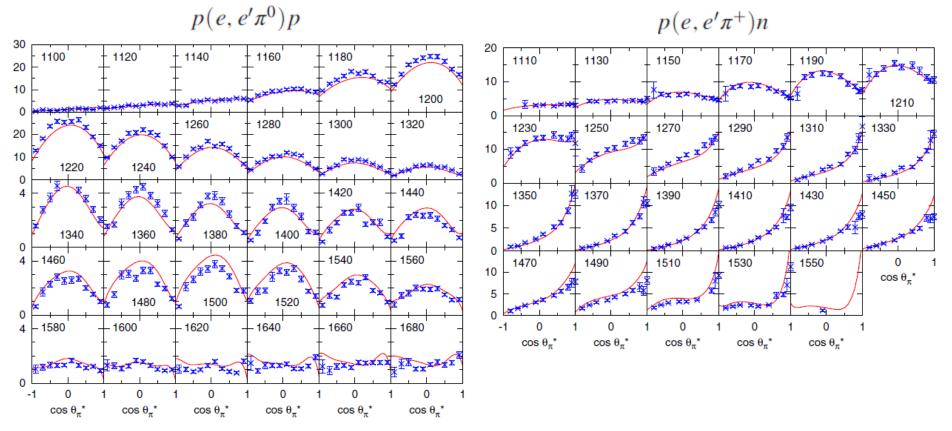
L. Alvarez-Ruso, IFIC

JPARC Symposium 2019

 $\nu_l N \to l \pi N'$

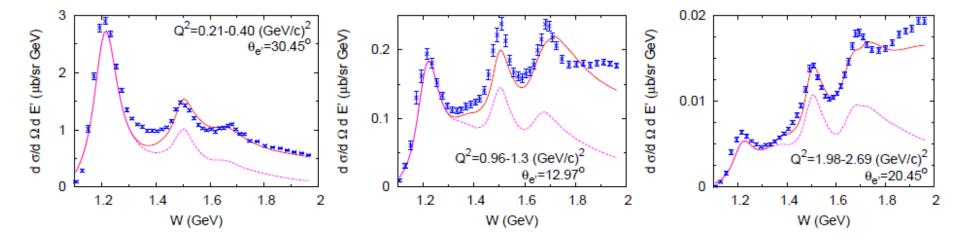

From Chiral symmetry:

Hernandez et al., Phys.Rev. D76 (2007) 033005


Weak pion production in ChPT

- First comprehensive study in ChPT
- Yao, LAR, Hiller, Vicente Vacas, PRD 98 (2018);
 Yao, LAR, Vicente Vacas, PLB 794 (2019)
- EOMS, explicit Δ (1232), O(p³) in the δ -counting: $\delta = m_{\Delta} m_{N} \sim O(p^{1/2})$

- LECs : 22 in total
 - 7 unknown (not very relevant)
 - 4 can be extracted from pion electroproduction
 - Information about remaining 3 could be obtained from new closeto-threshold measurements of ν -induced π production on protons
- Valid only close to threshold
- Benchmark for phenomenological models


Pheno models rely on (non- ν) data as input and/or validation
 Vector current can be constrained with $\gamma N \to N \pi$, $e N \to e' N \pi$

e.g. Dynamical Coupled Channel (DCC) Model Nakamura et al., PRD92 (2015)

- Pheno models rely on (non- ν) data as input and/or validation
 - Vector current can be constrained with $\gamma N o N \pi$, $e N o e' N \pi$
 - Axial current at $q^2 \rightarrow 0$ can be constrained with $\pi N \rightarrow N \pi$ (PCAC)

$$\frac{d\sigma_{\rm CC\pi}}{dE_l d\Omega_l}\Big|_{q^2=0} = \frac{G_F^2 V_{ud}^2}{2\pi^2} \frac{2f_{\pi}^2}{\pi} \frac{E_l^2}{E_{\nu} - E_l} \sigma_{\pi N}$$

e.g. Dynamical Coupled Channel (DCC) Model Nakamura et al., PRD92 (2015)

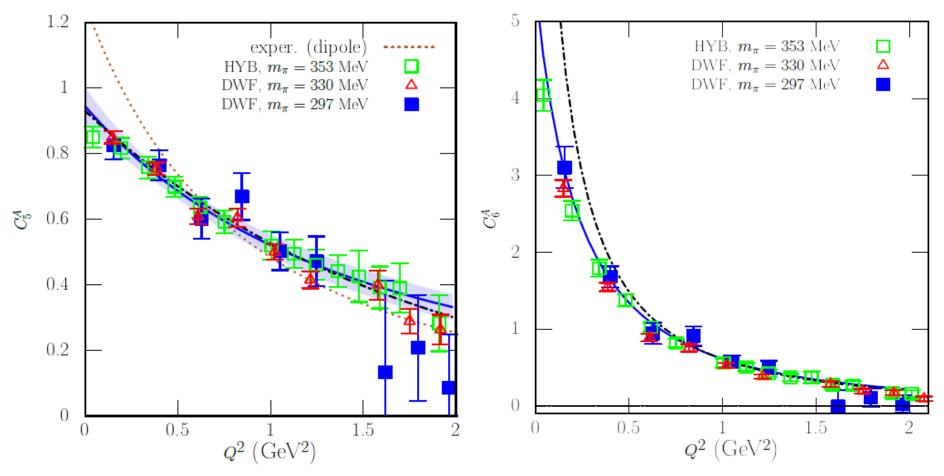
- Pheno models rely on (non- ν) data as input and/or validation
 Vector current can be constrained with $\gamma N \to N \pi$, $e N \to e' N \pi$
 - Axial current at $q^2 \rightarrow 0$ can be constrained with $\pi N \rightarrow N \pi$ (PCAC)

$$\frac{d\sigma_{\rm CC\pi}}{dE_l d\Omega_l}\Big|_{q^2=0} = \frac{G_F^2 V_{ud}^2}{2\pi^2} \frac{2f_{\pi}^2}{\pi} \frac{E_l^2}{E_{\nu} - E_l} \sigma_{\pi N}$$

- Very limited information about the axial current at $q^2 \neq 0$
 - Some on N- \varDelta (1232) from ANL and BNL data on $u_{\mu} \, d
 ightarrow \mu^{-} \, \pi^{+} \, p \, n$

$$C_{5}^{A} = C_{5}^{A}(0) \left(1 + \frac{Q^{2}}{M_{A\Delta}^{2}}\right)^{-2}$$

 $M_{A \Delta} = 0.95 \pm 0.06 \text{ GeV}$ LAR, Hernandez, Nieves, Vicente Vacas, PRD93(2016) Hernandez, Nieves, PRD 95 (2017)


Little (no) sensitivity to heavier baryon resonances
 Lattice QCD

L. Alvarez-Ruso, IFIC

Inelastic form factors & LQCD

■ N-<u></u>A axial form factors in LQCD

Alexandrou et al., PRD83 (2011)

"The Δ is hard enough..." C. Morningstar @ NSTAR 2019

L. Alvarez-Ruso, IFIC

JPARC Symposium 2019

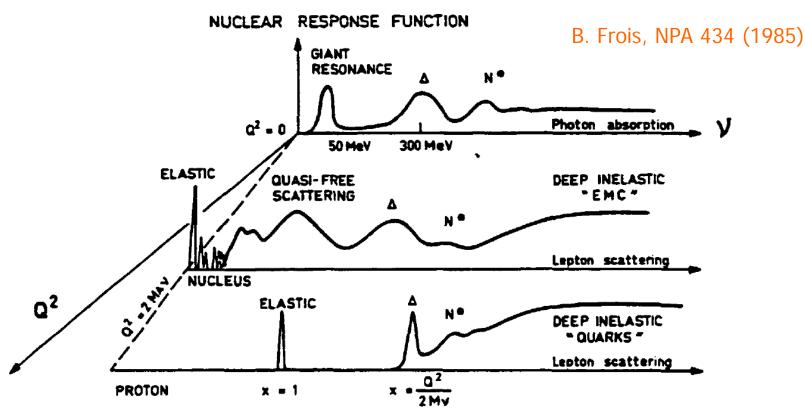
- Pheno models rely on (non- ν) data as input and/or validation
 Vector current can be constrained with $\gamma N \to N \pi$, $e N \to e' N \pi$
 - Axial current at $q^2 \rightarrow 0$ can be constrained with $\pi N \rightarrow N\pi$ (PCAC)

$$\frac{d\sigma_{\rm CC\pi}}{dE_l d\Omega_l}\Big|_{q^2=0} = \frac{G_F^2 V_{ud}^2}{2\pi^2} \frac{2f_{\pi}^2}{\pi} \frac{E_l^2}{E_{\nu} - E_l} \sigma_{\pi N}$$

Very limited information about the axial current at $q^2 \neq 0$

Some on N- \varDelta (1232) from ANL and BNL data on $u_\mu \, d o \mu^- \, \pi^+ \, p \, n$

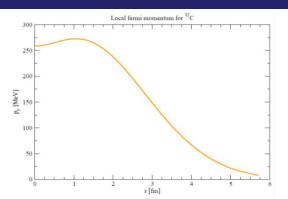
Little (no) sensitivity to heavier baryon resonances


■ Lattice QCD

Direct or indirect $CC1\pi$ measurement on n/p

There are hints (T. Sato @ ECT* 2019) that a q² dependence similar to the one exhibited by vector form factors might be more realistic

Neutrino interactions on nuclei


Multiscale (even at a given E_{ν}), multi-nucleon problem

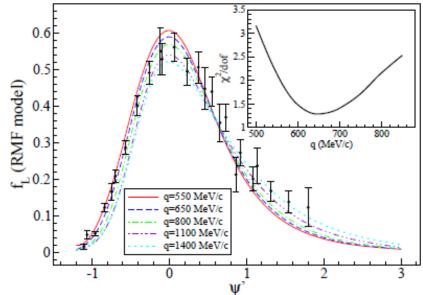
- Shell structure, collective excitations, QE peak, ...
- initial state description: non-relativistic
- **final state interactions:** (relativistic) NN, π N, ...

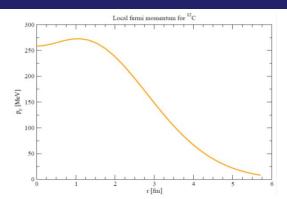
Initial nucleon:

- Local Fermi Gas
 - Fermi motion: $p_F(r) = [\frac{3}{2}\pi^2 \rho(r)]^{1/3}$

- (Relativistic) mean field potential
 - Schrödinger/Dirac eq. ⇒ bound-state wave functions

Spectral function

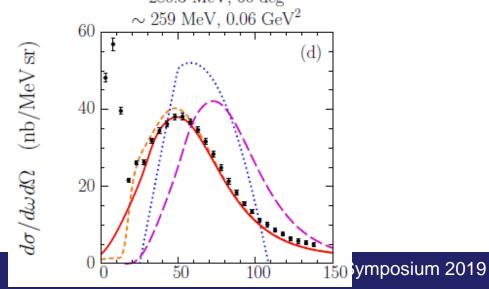

$$\mathcal{A}(p) = \mp \frac{1}{\pi} \frac{\mathrm{Im}\Sigma(p)}{[p^2 - M^2 - \mathrm{Re}\Sigma(p)]^2 + [\mathrm{Im}\Sigma(p)]^2}$$


- $Im\Sigma = 0 \Rightarrow$ mean-field approximation
- Im $\Sigma \Leftrightarrow NN$ interactions \Rightarrow short-range correlations

Final nucleon:

- Local Fermi Gas
 - Pauli blocking: $p_F(r) = [\frac{3}{2}\pi^2 \rho(r)]^{1/3}$
- Plain waves
- Distorted waves
 - Schrödinger/Dirac eq. ⇒ continuum wave functions
 - Relativistic mean field for both initial and final nucleons \Rightarrow realistic scaling function

R. Gonzalez et al., PRC 94 (2014)

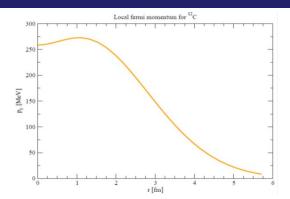


JPARC Symposium 2019

Final nucleon:

- Local Fermi Gas
 - Pauli blocking: $p_F(r) = [\frac{3}{2}\pi^2 \rho(r)]^{1/3}$
- Plain waves
- Distorted waves
 - Schrödinger/Dirac eq. ⇒ continuum wave functions
- Approximate spectral functions
 - Improves the description of (e,e') at low-momentum transfers Ankowski et al., PRD 91 (2015) 280.3 MeV, 60 deg

[Nov 150

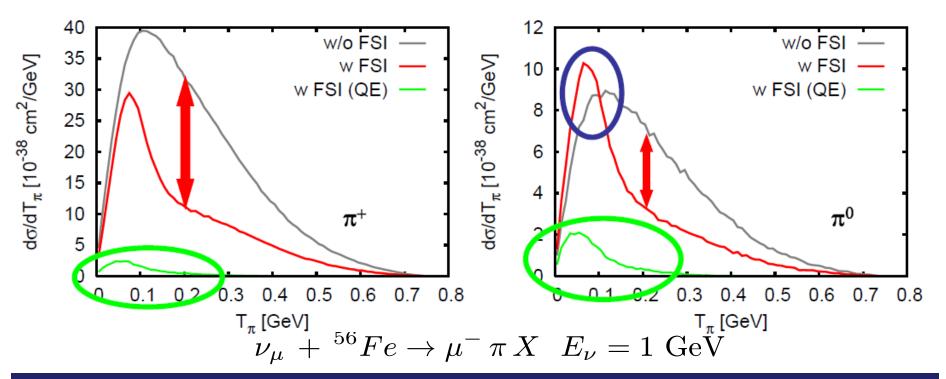

r [fm]

Final nucleon:

- Local Fermi Gas
 - Pauli blocking: $p_F(r) = [\frac{3}{2}\pi^2 \rho(r)]^{1/3}$
- Plain waves
- Distorted waves
 - Schrödinger/Dirac eq. ⇒ continuum wave functions
- Approximate spectral functions
 - Improves the description of (e,e') at low-momentum transfers Ankowski et al., PRD 91 (2015)

Exclusive final states:

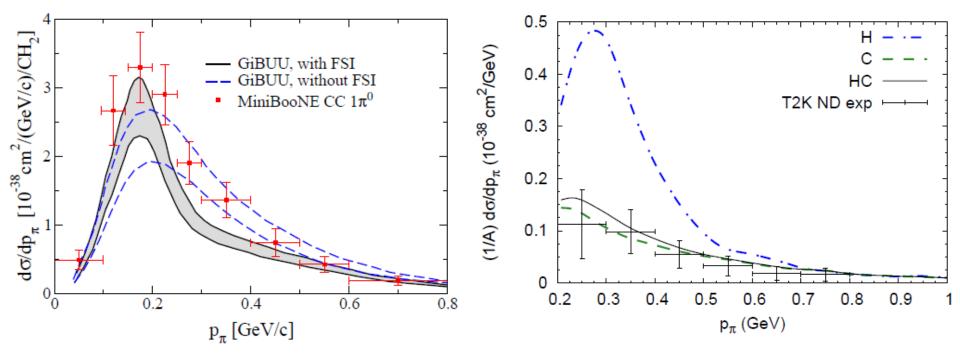
- QM: Distorted waves with complex optical potentials: 1N knockout
- Semi-classical:
 - Cascade: straightline trajectories + NN elastic and inelastic collisions
 - Transport (GiBUU): trajectories in a (x,p) dep. potential + NNcollisions



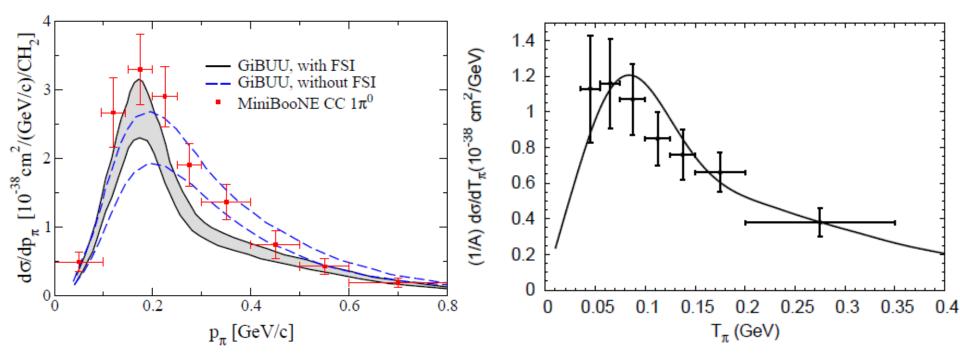
1π production on nuclei

GiBUU Leitner, LAR, Mosel, PRC 73 (2006)

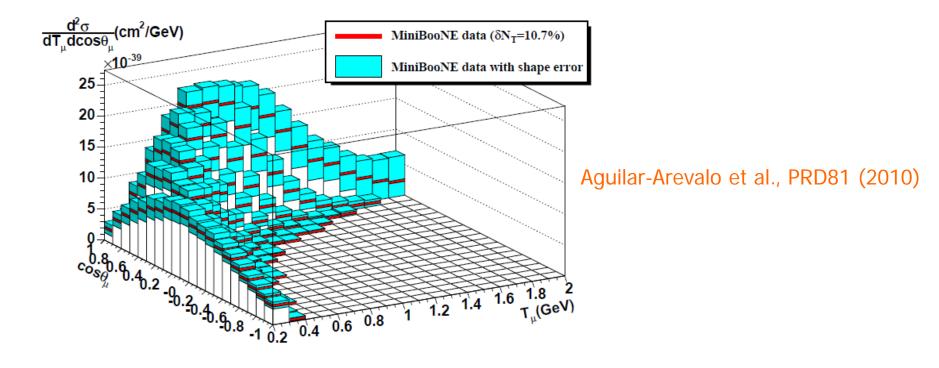
Effects of FSI on pion kinetic energy spectra


- **\blacksquare** strong absorption in Δ region
- **side-feeding from dominant** π^+ **into** π^{o} **channel**
- secondary pions through FSI of initial QE protons

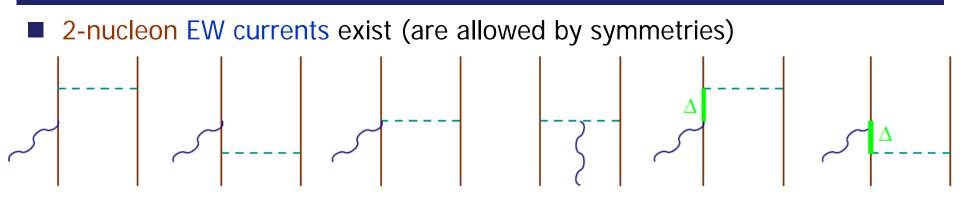
π production on $^{\rm 12}{\rm C}$


Comparison to MiniBooNE: Lalakulich, Mosel, PRC87 (2013) CCπ⁰ data: Aguilar-Arevalo, PRD83 (2011)

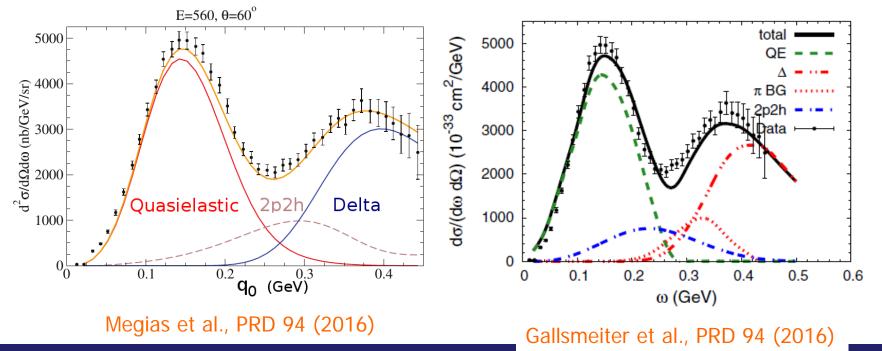
Comparison to T2K: Mosel, Gallmeister, PRC99 (2019) $CC\pi^{\pm}$ data: R. Castillo, PhD Thesis (2015)


π production on $^{\rm 12}{\rm C}$

Comparison to MiniBooNE: Lalakulich, Mosel, PRC87 (2013) CCπ⁰ data: Aguilar-Arevalo, PRD83 (2011) Comparison to MINERvA: Mosel, Gallmeister, PRC96 (2017) $CC\pi^{\pm}$ data: Eberly et al., PRD 92 (2015)

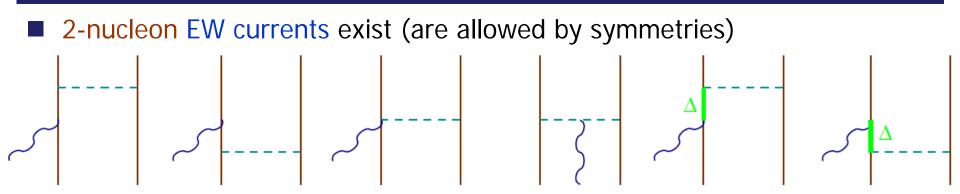

In spite of flux difference, MiniBooNE and MINERvA data probe the same dynamics and should be strongly correlated Sobczyk, Zmuda, PRC 91 (2015)

MiniBooNE data for "CCQE" 2D cross section:

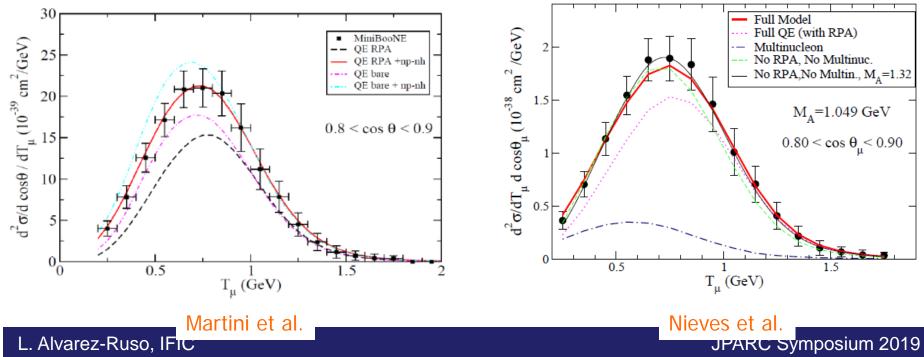


can be explained with a Relativistic Fermi Gas model and $M_A \approx 1.35$ GeV

- in disagreement with $M_A \approx 1$ GeV from bubble chamber data
- but consistent with F_A from the z-expansion

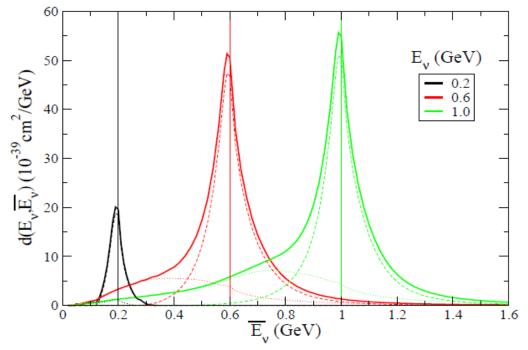


Sizable contribution can be inferred from A(e,e')X



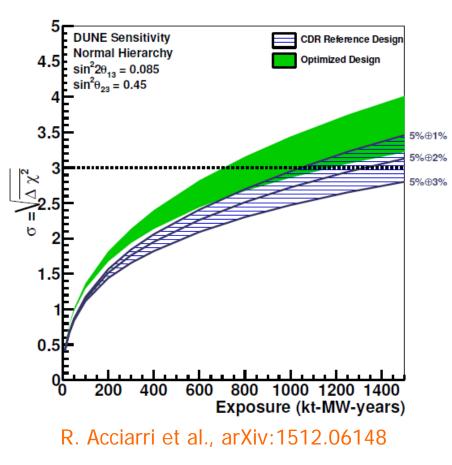
L. Alvarez-Ruso, IFIC

JPARC Symposium 2019



together with better QE nuclear models can explain MiniBooNE data with $M_A \approx 1$ GeV

Large implications for oscillation measurements
 bias in (kinematic) E_v reconstruction


$$E_{\nu}^{\text{QE}} = \frac{2m_n E_{\mu} - m_{\mu}^2 - m_n^2 + m_p^2}{2(m_n - E_{\mu} + p_{\mu}\cos\theta_{\mu})}$$

Martini et al., PRD 87 (2013)

Conclusion

75% CP Violation Sensitivity

" (...) the impact of pion and nucleon production through higher-energy inelastic interactions could play a key role. For instance, particles produced in nuclear interactions below detection threshold, or neutrons escaping detection, can lead to a large amount of missing energy. These effects are difficult to quantify as they rely on the predictions of a given nuclear model. Unless they are kept under control, they will generate a bias in the determination of neutrino energy towards lower energies, which in turn would translate into a wrong determination of the value of δ_{CP} ."

LAR et al., NuSTEC White Paper, Prog. Part. Nucl. Phys. 100 (2018)

Systematic errors are expensive: theory can help...