Magnetism in Kagome Antiferromagnet MgMn₃(OH)₆Cl₂

<u>Md. Mahbubur Rahman Bhuiyan¹</u>, Ichihiro Yamauchi¹, Xu-Guang Zheng^{1#}, and T. Kawae² ¹Department of Physics, Saga University, Saga 840-8502, Japan ²Department of Applied Quantum Physics, Kyushu University, Fukuoka 819-0395, Japan *#corresponding author: <u>zheng@cc.saga-u.ac.jp</u>*

Geometrically frustrated magnetism usually found in kagome, triangular, and pyrochlore lattice has received a lot of attention because Geometrical of exotic ground states. frustration leads to degeneracy, enhances spin fluctuations and suppresses magnetic long range ordering (LRO) [1-2]. Recently, spin liquid, partially frozen state with persistent spin fluctuation, and ordered state are found in ZnCu₃(OH)₆Cl₂ [3], Co₃Mg(OH)₆Cl₂ [4], and MgFe₃(OH)₆Cl₂ [5] kagome compounds, respectively. Beside spin-liquid state in low spin system, high spin classical or quasiclassical kagome antiferromagnets are of much interest. Here, we briefly describe the growth and magnetic characterization of S=5/2 kagome compound MgMn₃(OH)₆Cl₂. Polycrystalline MgMn₃(OH)₆Cl₂ compound was synthesized by solvothermal reaction of MgCl₂. 6H₂O, MnCl₂. 4H₂O and NaOH in water-ethanol solution in N2 atmosphere at high temperature. The compound was subject to x-ray diffraction (XRD), dc magnetic, and neutron powder diffraction experiments. The refined XRD data confirmed that the MgMn₃(OH)₆Cl₂ compound crystallizes in the rhombohedral structure with space group R-3m, with magnetic ions in the triangular planes almost completely replaced by nonmagnetic Mg^{2+} shown in Fig. 1. The susceptibility measurement showed antiferromagnetic transition T_N at 7.9 K as presented in Fig. 2.

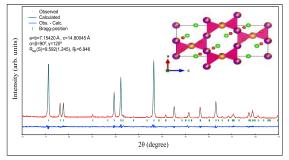


Fig.1: The Rietveld refinement of XRD pattern of MgMn₃(OH)₆Cl₂ compound.

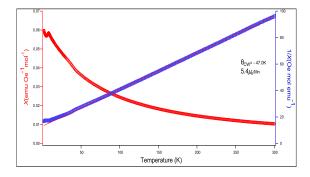


Fig. 2: Temperature dependence of the dc susceptibilities χ (left axis) and the inverse susceptibilities $1/\chi$ (right axis).

The experimentally estimated values of Curie-weiss temperature (θ_{CW}), curie constant (C), and effective magnetic moment (μ_{eff}) are -47 K. 3.61 emu K mol⁻¹, and 5.4 μ_B per Mn²⁺ spin. Neutron diffraction experiment confirm long-range antiferromagnetic order developed below 8 K in MgMn₃(OD)₆Cl₂ compound.

References

- [1]. M. J. Harris, S. T. Bramwell, D. F. McMorrow, et al., Phys. Rev. Lett, 79, 2554 (1997).
- [2]. S. Chu, T. M. McQueen, R. Chisnell, and et al., JACS Comm., DOI: 10.1021/ja1008322.
- [3]. P. Mendels, F. Bert, M. A. de Vries, and et al. Phys. Rev. Lett., 98, 077204 (2007).
- [4]. M. Fujihala, X. G. Zheng, Y. Oohara, and et al., Phys. Rev. B, 85, 012402 (2012).
- [5]. M. Fujihala, X. G. Zheng, S. Lee, T. and et. al. Phys. Rev. B, 96, 144111, (2017).