J-PARC muon *g*-2 experiment

Takayuki YAMAZAKI (KEK IMSS)

on behalf of
The J-PARC muon g-2/EDM collaboration

Muon *g*-2

Magnetic dipole moment

$$\boldsymbol{\mu} = \boldsymbol{g} \left(\frac{e}{2m} \right) \boldsymbol{s}$$

- The g factor is exactly 2 in tree level, but higher order terms make g larger
- $a_{\mu} = (g-2)/2$ is called anomalous magnetic moment

SM contributions

 $11658471.90 (0.01) \times 10^{-10}$ Phys. Rev. Lett. **109** (2012) 111808

LO HLbL: 9.80 (2.60) × 10⁻¹⁰ EPJ Web Conf. 118 (2016) 01016

LO HVP: 692.23 (2.54) × 10⁻¹⁰

 $15.36 (0.10) \times 10^{-10}$ Phys. Rev. D **88** (2013) 053005

>3σ discrepancy

- Muon g-2 is one of the most sensitive targets to explore new physics
 - Precise experiment (BNL E821): 0.5ppm
 - Precise theoretical calculations : 0.4ppm (2011) → 0.3ppm (2017)
- According to a recent theoretical calculation, the discrepancy between experiment and SM theory is $3.7\sigma \rightarrow \text{New physics?}$

New muon g-2 measurements

- Now experimentalists' turn to update the historical plot
 - FNAL E989
 - J-PARC E34
- Measurement principle
 - Measure spin precession frequency $\omega_{\rm a}$ under uniform magnetic field ${\it B}$

g-2>0

• More generally, $\boldsymbol{\omega}_{a}$ under \boldsymbol{B} and \boldsymbol{E} field is

$$\boldsymbol{\omega}_{a} = -\frac{e}{m_{\mu}} \left[a_{\mu} \boldsymbol{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \frac{\boldsymbol{\beta} \times \boldsymbol{E}}{c} + \frac{\eta_{\mu}}{2} \left(\boldsymbol{\beta} \times \boldsymbol{B} + \frac{\boldsymbol{E}}{c} \right) \right]$$

$$\underline{\boldsymbol{g}\text{-2}}$$
Effect of \boldsymbol{E} field
EDM

Elimination of *E*-field effect is necessary for precise measurements

FNAL E989 / J-PARC E34

• Their difference is the way to eliminate *E*-field effect.

$$\frac{\text{General form}}{\boldsymbol{\omega}_{a}} = -\frac{e}{m_{\mu}} \left[\frac{a_{\mu} \boldsymbol{B}}{g^{-2}} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \frac{\boldsymbol{\beta} \times \boldsymbol{E}}{c} + \frac{\eta_{\mu}}{2} \left(\boldsymbol{\beta} \times \boldsymbol{B} + \frac{\boldsymbol{E}}{c} \right) \right]$$
Effect of \boldsymbol{E} field

EDM

 $\gamma = 29.3 (P = 3 \text{ GeV})$ "Magic momentum"

$$\boldsymbol{\omega}_{a} = -\frac{e}{m_{\mu}} \left[\frac{a_{\mu} \boldsymbol{B}}{g^{-2}} + \frac{\eta_{\mu}}{2} \left(\boldsymbol{\beta} \times \boldsymbol{B} + \frac{\boldsymbol{E}}{c} \right) \right] \qquad \boldsymbol{\omega}_{a} = -\frac{e}{m_{\mu}} \left[\frac{a_{\mu} \boldsymbol{B}}{g^{-2}} + \frac{\eta_{\mu}}{2} \boldsymbol{\beta} \times \boldsymbol{B} \right]$$
EDM

FNAL E989

Improvement of the BNL method

E = o at any γ Only very weak magnetic focusing

$$\boldsymbol{\omega}_{a} = -\frac{e}{m_{\mu}} \left[\frac{a_{\mu} \boldsymbol{B} + \frac{\eta_{\mu}}{2} \boldsymbol{\beta} \times \boldsymbol{B}}{\frac{g-2}{\text{EDM}}} \right]$$

J-PARC E34

New method with different systematics

Super-low emittance muon beam (ultra slow muon beam) is the key technique for the J-PARC E34 experiment

J-PARC g-2 experiment (E34)

3 GeV proton beam (1MW, double pulses, 25Hz) target

Muonium production target (300 K ~ **25 meV**)

Surface muon beam (**4 MeV**)

ε~1000 π mm

Ultra slow μ^+ production by Resonant Laser Ionization of Muonium (~10⁶ μ^+ /s)

Compact storage magnet (3T, ~1ppm local)

Re-acceleration LINAC

(~ 200 MeV)

 $\varepsilon \sim 1 \pi \text{ mm} \cdot \text{mrad}$

Target precision

$$\Delta(g-2) = 0.1 \text{ ppm}$$

 $\Delta EDM = 10^{-21} e \cdot cm$

Experimental sequence

How to get a_{μ}

• $\omega_a = -\frac{e}{m_\mu} a_\mu B$ is extracted from the decay e⁺ time spectrum

Storage and detection (200 MeV)

• Magnetic field B is measured in the form of NMR frequency ω_p , and a_μ is

$$a_{\mu} = \frac{\omega_a/\omega_p}{\mu_{\mu}/\mu_p - \omega_a/\omega_p}$$

- Muon-to-proton magnetic moment ratio is obtained from muonium HFS measurement
 - $\mu_{\mu}/\mu_{p} = 3.18334524(37) : 0.12 ppm, LAMPF measurement$
 - will be measured with a precision of 0.01 ppm at the MuSEUM experiment at J-PARC

J-PARC g-2 experiment (E34)

Full tracking silicon tracker

Compact storage magnet (3T, ~1ppm local)

Oltra slow μ+ production by Resonant Laser Ionization of Muonium (~10⁶ μ+/s)

Laser
122nm, 355nm

Ultra
slow µ+

Surface muons

Mu production
target

Re-acceleration LINAC

(~ 200 MeV)

 $\varepsilon \sim 1 \pi \text{ mm} \cdot \text{mrad}$

Target precision

$$\Delta(g-2) = 0.1 \text{ ppm}$$

 $\Delta EDM = 10^{-21} e \cdot cm$

J-PARC

J-PARC = Japan Proton Accelerator Research Complex

J-PARC muon facility

MUSE (MUon Science Establishment) in the MLF

H-line

- surface μ⁺ (>10⁸ μ⁺/s),
 decay μ⁺/μ⁻, e⁻
- for high intensity & long beamtime experiments
- H1 for DeeMe & MuSEUM
- H2 for g-2/EDM & transmission muon microscopy
- under construction

D-line

- decay μ^+/μ^- , surface μ^+
- D1 area for μSR
- D2 for variety of science

Proposed experimental site (H2)

Construction status of H-line

Ready

- Main beamline magnets were already fabricated.
- Frontend devices were already installed in the proton beam tunnel.
- Beamline shield blocks in the existing experimental hall were installed

Proton beam tunnel

MLF experimental hall #1

Construction status of H-line

On-going

- Construction of a new electric power sub-station for H-line has started!
 - H-line needs about 5 MW electricity, but the surplus power of existing electric sub-stations in the MLF is only 1 MW.

Renovation of the MLF wall for electric power transmission line

Construction of the bedding of the electric sub-station

J-PARC g-2 experiment (E34)

3 GeV proton beam (1MW, double pulses, 25Hz) **Production** target Muonium production target (300 K ~ **25 meV**) Surface muon Day beam (4 MeV)

Ultra slow μ^+ production by Resonant Laser Ionization of Muonium (~106 μ+/s)

 $\epsilon \sim 1000 \pi mm$

Compact storage magnet (3T, ~1ppm local)

Re-acceleration LINAC

(~ 200 MeV)

 $\varepsilon \sim 1 \pi \text{ mm} \cdot \text{mrad}$

Target precision

$$\Delta(g-2) = 0.1 \text{ ppm}$$

 $\Delta EDM = 10^{-21} e \cdot cm$

Ultra-slow muon (USM)

G. Beer et al., Prog.Theor.Exp.Phys. (2014)091C01

Mu yields vs ablation parameters

Systematic study of Mu yield of various samples

- There seems to be correlation between yield and ablation area ratio.
 - Detailed analysis is on-going to understand the emission mechanism.

Long-term stability of Mu yield

 Long term stability is important for J-PARC E34 experiment, so checked during the beamtime.

No hint of degradation was observed for 2.5 days

J-PARC g-2 experiment (E34)

3 GeV proton beam (1MW, double pulses, 25Hz) target

Muonium production target (300 K ~ **25 meV**)

Surface muon beam (4 MeV)

ε~1000 π mm · mrac

Ultra slow μ^+ production by Resonant Laser Ionization of Muonium (~10⁶ μ^+ /s)

Compact storage magnet (3T, ~1ppm local)

Re-acceleration LINAC

(~ 200 MeV)

 $\varepsilon \sim 1 \pi \text{ mm} \cdot \text{mrad}$

Target precision

$$\Delta(g-2) = 0.1 \text{ ppm}$$

 $\Delta EDM = 10^{-21} e \cdot cm$

Muon acceleration

 Beam acceleration and transportation were simulated from USM source to the exit of muon LINAC, and emittance growth is not significant.

- Construction of each structure and demonstration of muon acceleration is next step.
- Muon acceleration using RFQ was demonstrated in Oct. 2017.

Muon RF acceleration for the first time! 22

Muon RF acceleration for the first time! 23

J-PARC g-2 experiment (E34)

Full tracking silicon tracker

66 cm

Compact storage magnet (3T, ~1ppm local)

Ultra slow μ⁺ production by Resonant Laser Ionization of Muonium (~10⁶ μ⁺/s)

Re-acceleration LINAC

(~ 200 MeV)

ε~1 π mm · mrad

Target precision

$$\Delta(g-2) = 0.1 \text{ ppm}$$

 $\Delta EDM = 10^{-21} e \cdot cm$

Spiral injection to storage magnet

- Ultra slow muon beam (~200MeV) is injected to the storage magnet using spiral injection and weak magnetic kick.
 - ✓ Injection efficiency ~90% (c.f. NIMA 832 (2016) 51-62)
 - ✓ Test experiment using electron beam is on-going.

Muon storage magnet

- Compact MRI-type solenoid (3 T)
 - ✓ Shimming technique to achieve local uniformity of 1 ppm was confirmed using the same type magnet

Cross calibration of NMR probes

• NMR probes to measure $B(\omega_p)$ were cross-calibration at ANL.

The NMR probes (J-PARC, FNAL E989)

MRI magnet for calibration at ANL (1.45 T)

Probe type	Frequency (Hz)	Preliminary
J-PARC	617 176 44.5 ± 1.0 (0.0)15 ppm)
Fermilab	617 176 44.9 \pm 0.9 (0.015 ppm)	
Difference	0.4 ± 1.3 (C).021 ppm)

They agreed within 0.021 ppm!

Decay e⁺ tracking detector

Decay e⁺ tracks are measured using silicon strip sensors.

- Prototype module was already used in real experiment (MuSEUM) with muon beam in Jun. 2017.
 - ✓ One silicon strip sensor (512ch x 2 block)
 - ✓ Prototype readout ASIC

Technical Design Report (TDR) 2017

• We revised the TDR responding to focused review committee's recommendations and submitted to PAC in Dec. 2017.

Date	Events	
July, 2009	LOI submitted to PAC8	
January, 2010	Proposal submitted to PAC9	
January, 2012	CDR submitted to PAC13, Milestones defined.	
July, 2012	Stage-1 status recommended by PAC15 Stage-1 status granted by the IPNS director	
May, 2015	TDR submitted to PAC	
Oct, 2016	Revised TDR submitted to PAC and FRC	
Nov, 2016	Focused review on technical design	
Dec 15, 2017	Responses and Revised TDR submitted to PAC	

Summary

• J-PARC g-2 experiment (E34) is under preparation to measure muon g-2 with an independent method using ultra slow muon beam.

physics data & results construction

TDR

 Construction phase is starting and there were many achievements in the last year.

Hill American to the selection.

Further information : http://g-2.kek.jp

The collaboration

