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2 Dark Matbter status. (ka s 21 cm impor&av\& o DM?)
B Cownskrainks on the DM annihilaktion. m
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First Stars and Reionization Era

Time since the
Big Bang (years)

~ 380 Thousand

~-400 Million

~ 1 Billion

~ 9 billion

~13.7 Billion -£

/—

Dark Age

Epoch of Reionization

Today: Astronomers look back and understand

The Big Bang/Inflation

Universe filled with
lonized gas:
fully opaque

Universe becomes
neutral and transparent

Galaxies and Quasers
begin to form - starting
reionization.

Reionization complete
~ 10% opacity

Galaxies evolve

Dark Energy begins

. to accelerate the

expansion of space

| Our Solar System
. forms

The 21-cm Line i hydrogen
is potentially a means of
studying this period.

Higher energy Spin
state f“p

a*Plas

1420 MHz
;t. = 21 cm

o The transition (up, down) "directly” to
(up, up) is ALMOST forbidden, a mean
Li{i&&ime of 3e7 Yr's, (Good target!)

o OM};P objects form in the "dark ages”
and emit a lobks of Lyman-alpha
photons absorbed and re-emitted bv
surrounding neutral hydrogen,

o Distribution of two different states are
changed via Wouthuysen-field effect,
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Experiment to Detect the Global |

Relonization Sighature
(EDGES)

poch of

po l‘ -
— - “—-"
i - .
S - .-r v ot
P . il - J:gv sz Y2 | m——
—= e e I

EDGES is ko measure barvon
gas temperature T..b with
a single wide field-of-view
well-calibrakted ankenna.




Age of the Universe (Myr)
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Figure 2 | Best-fitting 21-cm absorption profiles for each hardware case.
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Age of the Universe (Myr)
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Figure 2 | Best-fitting 21-cm absorption profiles for each hardware case.

For the EDGES best-fit model, the reported . 5
sighal-to-noise ratic is 37 at frequemav of 7%.1 X2 (TQEID e j. 21 )

——
MHz with the ampii&ud@. of 0,63 K which is skrong g | where X = 72
enough to breat iks likelihood as Gaussian. - EDGES
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measurement ?

i T(z) | 1 Suh" 0.15 \/1 + 2
Tyi(2) ~ 23mK |1 — =2 .
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The first-star model

T21=~209 pmK
LS 3.% sigma away

180 m years
0 Theoretical expectation @ IV\@T’QO\SQ ngam VWD,
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S { @ Decrease T_s:

o S S — 3 Cold First star, DM cooling,
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D Decrease T_s.
@ Increase T_gamma.,

@ Rutherford Cooling,
Xsec ¥ v -4,

€ Too weak coupling
to satishy Relic density,

@ ONLY tiny fraction
and small parame&er
sya«ce LS Ok,




@ Increase T_gamma,
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Abstract

Recently the EDGES experiment reported an enhanced 21cm absorption signal in
the radio wave observation, which may be interpreted as either anomalous cooling
of baryons or heating of cosmic microwave background photons. In this paper, we
pursue the latter possibility. We point out that dark radiation consisting of axion-like
particles can resonantly convert into photons under the intergalactic magnetic field,

which can effectively heat up the radiation in the frequency range relevant for the
EDGES experiment. This may explain the EDGES anomaly.
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WIMP-nucleon scattering

e The constraint from
WIMP-nucleon scattering
LS very stringent.
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Dark Matter modified qgos temperabure
and
the ionization fraction of kyc&ragev\ atom,
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1. Ti@)] fsuh®\ [0415 \/ 1+ 2
To1(z) ~ 23mK |1 ' 5
21( ) TN - Ts(:)_ ( 0.02 ) (Qm/72> 10 LHI

1D The first-star profile is unsure,
N ® Cur new idea: DM annihilakion
s not dominant conkribution.,
T Hence, Fhe tnverbed Ts can be

Null DM signal se

] presemﬁed as the most
1 conservabive estimabion,
| | — T} @B Based on such a Ts, one can
182002 get rid of the systematical

uncertainties of the first star.

FIG. 1: The best-fit model for T5; (lower panel) given in the extended data in Fig. 8 of Ref. [6].

The upper panel presents the 75 which is converted from the best-fit model of 751 by assuming a

null DM search.
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T_gas=(Data - B + X - Ann);
where
B: All non-DM annihilation sources
Ann: DM annihilation
X: Some additional DM introduced cooling, X~(1+eta)*Ann

o For hull-DM-sighnal search, Data-B=0,
o eba+1<0 shall be counted as B but our Limilk is wmore conservakive.

o eba+1>0, some uncertainties are introduced but it is unrealistic for
WIMP.

o If [X|YAnn (eta=0, subset of above), it will be not possible under
WIMP scenario, because of DM Direct debection Limit.

o Excepltion: X is new source and not DM, X-Ann~zero, very fine-tuned.
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It is popular but not precise enough to obtain 21 cm comstrainks bj
using wrapped energy fraction (feff).

FIG. 2: The comparison of the effects from different’DM annihilation channels and cross sections
on the T5; signal, with the boost factor (left panel) and without the boost factor (right panel).
The black solid line is the 7T5; signal from EDGES. The red lines represent the modified 7%
temperatures with DM annihilation process yx — eTe~ while the blue lines represent those with

DM annihilation process yy — bb.



‘DM constkrainks

e EDGES Limik is wore stringent than
Planclke CMB Limiks,

o Below 100 ey, EDGES Limik is

o stronger than Fermi dSths Limik,
cho e AMSOR am&proﬁom cownsktrainks s overall
z stronger, except 100 GeV window.
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EDCGES DM cons %ra ks

e EDGES Limit is wmore stringent than 10%°
Planclke CMB Limiks, —

-24
o Below 100 CreV, EDGES Limik is 10
stronger than Fermi dSphs Limit.

e AMSOR an&ipro&om conskraints s overall
stronger, except 100 GeV window,
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constraints
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Summary and conclusion

o In ull DM-sighal approach, ohne can simply bjpass the unclear
model uncertainties of the formation of first stars.

» We directly computes the propagation of the injected energy and
does not assume any energy fraction (feff) in the calculation.,

o With the modified 21 em brightness temperature evolution, the
new conskrainks on the ee and bb channels are qgiven,

o EDGES Limits are Cam[mrabie to the constraints from the Fermi
dSphs data and the AMS-02 antiproton data.

o EDGES Limiks are wmore stringent than Plancke CMB Limiks.



'Right now is an exciting time, because everybody is
thinking about where we should qo next with new
frontiers opening up, |

- Cooley, APS NEWS, July 2018 (Volume 27, Number 7)
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Gamma-rays | 9 -
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Theoretical expectation
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WIMP Dark
Matter Particles
Ecm~100GeV

The first-star model
T21=-209 mwK

LS 3% sigma away

+a few p/p, d/d

Anti-matter pair creation

Y € ¥ e” cdl

The DM annihilation injected particle o- Yy o &
Cawn C)V\bj HEAT Hﬂs@; e- Compt?n
gas temperature. e A Seateine | photoclectric
| 4 L~ - absorption

This means the -

¥ photonuclear
reaction

power of constraint
can be strong

Lyman photons jonization



w&kauﬁ prs?: s%o\rs

T5 (mK)

sv~3e-24 cm3 s-1 EE
mx~100 GeV__ fI -
M Without Boost factor
e (1) Boosk factor is larger at small
redshitt.
_ “f B(x') =1 1.6 x erfc|(1+ 2’)/20.5] < 105,

(14 27)L54
@ DM annihilakion OML:j enhance T21,

so ik s some Fension wikth the

1T EDGES daka.

B DM conbribubion is varied wikh
With Boost factor redshift,




Foregrounds

e Many foregrounds

= (alactic synchrotron (especially polarized component)

= Radio Frequency Interference (RFI)
e.g. radio, cell phones, digital radio

= Radio recombination lines
= Radio point sources

e Foregrounds dwarf signal:
foregrounds ~1000s K vs 10s mK signal

» Strong frequency dependence T, oxv4©

e Foreground removal exploits smoothness in frequency and
spatial symmetries Taken from I, Priktchard’s Tallk.




important to DM search?

Signal Experiments DM Hinks
Coillders LHC, LE?P, Tevatron, .. ek
(missing ev\ergj)

Direct debection XENONLT, LUX, PandaX.. DAMA, CotreNT, CRESST
(SM recoil energy) ab low DM mass region.
Cosmic rays 1. PAMELA, Fermi-LAT, AMSOR, 1. High energy

1. Positrowns DAMTE Posi&ron excess

2. antiprotons 2. PAMELA, AMSO2 2. 70 GeVy excess

3. neubkrinos 3. IceCube 3. Tey-PeV neubtrinos
Gamma rays Fermi—LAT, HESS, .. FERMI bubbles, GCE
X*l'&j XMM-Newkbon L

Those signals are aom&ro\dw&orjq
Sounds Lilke WIMPs search is Pessim&s&&
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